1
|
Bates JHT, Kaczka DW, Kollisch-Singule M, Nieman GF, Gaver DP. Atelectrauma can be avoided if expiration is sufficiently brief: evidence from inverse modeling and oscillometry during airway pressure release ventilation. Crit Care 2024; 28:329. [PMID: 39380082 PMCID: PMC11462759 DOI: 10.1186/s13054-024-05112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Airway pressure release ventilation (APRV) has been shown to be protective against atelectrauma if expirations are brief. We hypothesize that this is protective because epithelial surfaces are not given enough time to come together and adhere during expiration, thereby avoiding their highly damaging forced separation during inspiration. METHODS We investigated this hypothesis in a porcine model of ARDS induced by Tween lavage. Animals were ventilated with APRV in 4 groups based on whether inspiratory pressure was 28 or 40 cmH2O, and whether expiration was terminated when end-expiratory flow reached either 75% (a shorter expiration) or 25% (a longer expiration) of its initial peak value. A mathematical model of respiratory system mechanics that included a volume-dependent elastance term characterized by the parameter E 2 was fit to airway pressure-flow data obtained each hour for 6 h post-Tween injury during both expiration and inspiration. We also measured respiratory system impedance between 5 and 19 Hz continuously through inspiration at the same time points from which we derived a time-course for respiratory system resistance ( R rs ). RESULTS E 2 during both expiration and inspiration was significantly different between the two longer expiration versus the two shorter expiration groups (ANOVA, p < 0.001). We found that E 2 was most depressed during inspiration in the higher-pressure group receiving the longer expiration, suggesting that E 2 reflects a balance between strain stiffening of the lung parenchyma and ongoing recruitment as lung volume increases. We also found in this group that R rs increased progressively during the first 0.5 s of inspiration and then began to decrease again as inspiration continued, which we interpret as corresponding to the point when continuing derecruitment was reversed by progressive lung inflation. CONCLUSIONS These findings support the hypothesis that sufficiently short expiratory durations protect against atelectrauma because they do not give derecruitment enough time to manifest. This suggests a means for the personalized adjustment of mechanical ventilation.
Collapse
Affiliation(s)
- Jason H T Bates
- Department of Medicine, University of Vermont, University of Vermont Larner College of Medicine, 149 Beaumont Avenue, Burlington, VT, 05405, USA.
| | - David W Kaczka
- Departments of Anesthesia, Biomedical Engineering, and Radiology, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Gary F Nieman
- Department of Surgery, SUNY Upstate Medical Center, Syracuse, NY, 13210, USA
| | - Donald P Gaver
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| |
Collapse
|
2
|
Songsangvorn N, Xu Y, Lu C, Rotstein O, Brochard L, Slutsky AS, Burns KEA, Zhang H. Electrical impedance tomography-guided positive end-expiratory pressure titration in ARDS: a systematic review and meta-analysis. Intensive Care Med 2024; 50:617-631. [PMID: 38512400 PMCID: PMC11078723 DOI: 10.1007/s00134-024-07362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE Assessing efficacy of electrical impedance tomography (EIT) in optimizing positive end-expiratory pressure (PEEP) for acute respiratory distress syndrome (ARDS) patients to enhance respiratory system mechanics and prevent ventilator-induced lung injury (VILI), compared to traditional methods. METHODS We carried out a systematic review and meta-analysis, spanning literature from January 2012 to May 2023, sourced from Scopus, PubMed, MEDLINE (Ovid), Cochrane, and LILACS, evaluated EIT-guided PEEP strategies in ARDS versus conventional methods. Thirteen studies (3 randomized, 10 non-randomized) involving 623 ARDS patients were analyzed using random-effects models for primary outcomes (respiratory mechanics and mechanical power) and secondary outcomes (PaO2/FiO2 ratio, mortality, stays in intensive care unit (ICU), ventilator-free days). RESULTS EIT-guided PEEP significantly improved lung compliance (n = 941 cases, mean difference (MD) = 4.33, 95% confidence interval (CI) [2.94, 5.71]), reduced mechanical power (n = 148, MD = - 1.99, 95% CI [- 3.51, - 0.47]), and lowered driving pressure (n = 903, MD = - 1.20, 95% CI [- 2.33, - 0.07]) compared to traditional methods. Sensitivity analysis showed consistent positive effect of EIT-guided PEEP on lung compliance in randomized clinical trials vs. non-randomized studies pooled (MD) = 2.43 (95% CI - 0.39 to 5.26), indicating a trend towards improvement. A reduction in mortality rate (259 patients, relative risk (RR) = 0.64, 95% CI [0.45, 0.91]) was associated with modest improvements in compliance and driving pressure in three studies. CONCLUSIONS EIT facilitates real-time, individualized PEEP adjustments, improving respiratory system mechanics. Integration of EIT as a guiding tool in mechanical ventilation holds potential benefits in preventing ventilator-induced lung injury. Larger-scale studies are essential to validate and optimize EIT's clinical utility in ARDS management.
Collapse
Affiliation(s)
- Nickjaree Songsangvorn
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Critical Care Medicine, Bhumibol Adulyadej Hospital, Bangkok, Thailand
| | - Yonghao Xu
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Cong Lu
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Ori Rotstein
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Laurent Brochard
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Arthur S Slutsky
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Karen E A Burns
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Haibo Zhang
- Keenan Research Centre for Biomedical Science and the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Tisminetzky M, Dianti J, Ferreyro BL, Angriman F, Del Sorbo L, Sud S, Talmor D, Fan E, Ferguson ND, Serpa Neto A, Adhikari NKJ, Goligher EC. Association of different positive end-expiratory pressure selection strategies with all-cause mortality in adult patients with acute respiratory distress syndrome. Syst Rev 2021; 10:225. [PMID: 34384488 PMCID: PMC8357961 DOI: 10.1186/s13643-021-01766-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The acute respiratory distress syndrome (ARDS) has high morbidity and mortality. Positive end-expiratory pressure (PEEP) is commonly used in patients with ARDS but the best method to select the optimal PEEP level and reduce all-cause mortality is unclear. The primary objective of this network meta-analysis is to summarize the available evidence and to compare the effect of different PEEP selection strategies on all-cause mortality in adult patients with ARDS. METHODS We will search MEDLINE, Cochrane Central Register of Controlled Trials, PubMed, EMBASE, and LILACS from inception onwards for randomized controlled trials assessing the effect of PEEP selection strategies in adult patients with moderate to severe ARDS. We will exclude studies that did not use a lung-protective ventilation approach as part of the comparator or intervention strategy. The primary outcome will be all-cause mortality (at the longest available follow-up and up to 90 days). Secondary outcomes will include barotrauma, ventilator-free days, intensive care unit and hospital length of stay, and changes in oxygenation. Two reviewers will independently screen all citations, full-text articles, and extract study-data. We will assess the risk of bias for each of the outcomes using version 2 of the Cochrane risk of bias tool for randomized controlled trials. If feasible, Bayesian network meta-analyses will be conducted to obtain pooled estimates of all potential head-to-head comparisons. We will report pairwise and network meta-analysis treatment effect estimates as risk ratios and risk differences, together with the associated 95% credible intervals. We will assess certainty in effect estimates using GRADE methodology. DISCUSSION The present study will inform clinical decision-making for adult patients with ARDS and will improve our understanding of the limitations of the available literature assessing PEEP selection strategies. Finally, this information may also inform the design of future randomized trials, including the selection of interventions, comparators, and predictive enrichment strategies. TRIAL REGISTRATION PROSPERO 2020 CRD42020193302 .
Collapse
Affiliation(s)
- Manuel Tisminetzky
- University Health Network/Sinai Health System, University of Toronto, Toronto, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Jose Dianti
- University Health Network/Sinai Health System, University of Toronto, Toronto, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Bruno L Ferreyro
- University Health Network/Sinai Health System, University of Toronto, Toronto, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Federico Angriman
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada.,Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Lorenzo Del Sorbo
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Division of Respirology and Critical Care Medicine, Toronto General Hospital, 585 University Ave. 11-PMB, Room 192, Toronto, ON, M5G 2N2, Canada
| | - Sachin Sud
- Institute for Better Health and Critical Care, Department of Medicine, Trillium Health Partners, Mississauga, Canada
| | - Daniel Talmor
- Department of Anesthesia, Pain, Medicine and Critical Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Division of Respirology and Critical Care Medicine, Toronto General Hospital, 585 University Ave. 11-PMB, Room 192, Toronto, ON, M5G 2N2, Canada
| | - Niall D Ferguson
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada.,Division of Respirology and Critical Care Medicine, Toronto General Hospital, 585 University Ave. 11-PMB, Room 192, Toronto, ON, M5G 2N2, Canada
| | | | - Neill K J Adhikari
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada.,Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Ewan C Goligher
- University Health Network/Sinai Health System, University of Toronto, Toronto, Canada. .,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada. .,Division of Respirology and Critical Care Medicine, Toronto General Hospital, 585 University Ave. 11-PMB, Room 192, Toronto, ON, M5G 2N2, Canada. .,Toronto General Hospital Research Institute, Toronto, ON, Canada.
| |
Collapse
|
4
|
Higher versus lower positive end-expiratory pressure in patients without acute respiratory distress syndrome: a meta-analysis of randomized controlled trials. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:247. [PMID: 34266460 PMCID: PMC8280384 DOI: 10.1186/s13054-021-03669-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/04/2021] [Indexed: 12/29/2022]
Abstract
Background We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) to assess the association of higher positive end-expiratory pressure (PEEP), as opposed to lower PEEP, with hospital mortality in adult intensive care unit (ICU) patients undergoing invasive mechanical ventilation for reasons other than acute respiratory distress syndrome (ARDS). Methods We performed an electronic search of MEDLINE, EMBASE, Scopus, Cochrane Central Register of Controlled Trials, CINAHL, and Web of Science from inception until June 16, 2021 with no language restrictions. In addition, a research-in-progress database and grey literature were searched. Results We identified 22 RCTs (2225 patients) comparing higher PEEP (1007 patients) with lower PEEP (991 patients). No statistically significant association between higher PEEP and hospital mortality was observed (risk ratio 1.02, 95% confidence interval 0.89–1.16; I2 = 0%, p = 0.62; low certainty of evidence). Among secondary outcomes, higher PEEP was associated with better oxygenation, higher respiratory system compliance, and lower risk of hypoxemia and ARDS occurrence. Furthermore, barotrauma, hypotension, duration of ventilation, lengths of stay, and ICU mortality were similar between the two groups. Conclusions In our meta-analysis of RCTs, higher PEEP, compared with lower PEEP, was not associated with mortality in patients without ARDS receiving invasive mechanical ventilation. Further large high-quality RCTs are required to confirm these findings. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-021-03669-4.
Collapse
|
5
|
Battaglini D, Sottano M, Ball L, Robba C, Rocco PR, Pelosi P. Ten golden rules for individualized mechanical ventilation in acute respiratory distress syndrome. JOURNAL OF INTENSIVE MEDICINE 2021; 1:42-51. [PMID: 36943812 PMCID: PMC7919509 DOI: 10.1016/j.jointm.2021.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/22/2022]
Abstract
Considerable progress has been made over the last decades in the management of acute respiratory distress syndrome (ARDS). Mechanical ventilation(MV) remains the cornerstone of supportive therapy for ARDS. Lung-protective MV minimizes the risk of ventilator-induced lung injury (VILI) and improves survival. Several parameters contribute to the risk of VILI and require careful setting including tidal volume (VT), plateau pressure (Pplat), driving pressure (ΔP), positive end-expiratory pressure (PEEP), and respiratory rate. Measurement of energy and mechanical power allows quantification of the relative contributions of various parameters (VT, Pplat, ΔP, PEEP, respiratory rate, and airflow) for the individualization of MV settings. The use of neuromuscular blocking agents mainly in cases of severe ARDS can improve oxygenation and reduce asynchrony, although they are not known to confer a survival benefit. Rescue respiratory therapies such as prone positioning, inhaled nitric oxide, and extracorporeal support techniques may be adopted in specific situations. Furthermore, respiratory weaning protocols should also be considered. Based on a review of recent clinical trials, we present 10 golden rules for individualized MV in ARDS management.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa 16132, Italy
- Department of Medicine, University of Barcelona, Barcelona 08007, Spain
| | - Marco Sottano
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa 16132, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa 16126, Italy
| | - Lorenzo Ball
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa 16132, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa 16126, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa 16132, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa 16126, Italy
| | - Patricia R.M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa 16132, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa 16126, Italy
- Corresponding author: Paolo Pelosi, Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa 16132, Italy.
| |
Collapse
|
6
|
Fogagnolo A, Montanaro F, Al-Husinat L, Turrini C, Rauseo M, Mirabella L, Ragazzi R, Ottaviani I, Cinnella G, Volta CA, Spadaro S. Management of Intraoperative Mechanical Ventilation to Prevent Postoperative Complications after General Anesthesia: A Narrative Review. J Clin Med 2021; 10:jcm10122656. [PMID: 34208699 PMCID: PMC8234365 DOI: 10.3390/jcm10122656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 01/02/2023] Open
Abstract
Mechanical ventilation (MV) is still necessary in many surgical procedures; nonetheless, intraoperative MV is not free from harmful effects. Protective ventilation strategies, which include the combination of low tidal volume and adequate positive end expiratory pressure (PEEP) levels, are usually adopted to minimize the ventilation-induced lung injury and to avoid post-operative pulmonary complications (PPCs). Even so, volutrauma and atelectrauma may co-exist at different levels of tidal volume and PEEP, and therefore, the physiological response to the MV settings should be monitored in each patient. A personalized perioperative approach is gaining relevance in the field of intraoperative MV; in particular, many efforts have been made to individualize PEEP, giving more emphasis on physiological and functional status to the whole body. In this review, we summarized the latest findings about the optimization of PEEP and intraoperative MV in different surgical settings. Starting from a physiological point of view, we described how to approach the individualized MV and monitor the effects of MV on lung function.
Collapse
Affiliation(s)
- Alberto Fogagnolo
- Department of Translation Medicine and for Romagna, Section of Anesthesia and Intensive Care, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (C.T.); (R.R.); (I.O.); (C.A.V.); (S.S.)
- Correspondence:
| | - Federica Montanaro
- Department of Translation Medicine and for Romagna, Section of Anesthesia and Intensive Care, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (C.T.); (R.R.); (I.O.); (C.A.V.); (S.S.)
| | - Lou’i Al-Husinat
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan;
| | - Cecilia Turrini
- Department of Translation Medicine and for Romagna, Section of Anesthesia and Intensive Care, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (C.T.); (R.R.); (I.O.); (C.A.V.); (S.S.)
| | - Michela Rauseo
- Department of Anesthesia and Intensive Care, University of Foggia, 71122 Foggia, Italy; (M.R.); (L.M.); (G.C.)
| | - Lucia Mirabella
- Department of Anesthesia and Intensive Care, University of Foggia, 71122 Foggia, Italy; (M.R.); (L.M.); (G.C.)
| | - Riccardo Ragazzi
- Department of Translation Medicine and for Romagna, Section of Anesthesia and Intensive Care, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (C.T.); (R.R.); (I.O.); (C.A.V.); (S.S.)
| | - Irene Ottaviani
- Department of Translation Medicine and for Romagna, Section of Anesthesia and Intensive Care, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (C.T.); (R.R.); (I.O.); (C.A.V.); (S.S.)
| | - Gilda Cinnella
- Department of Anesthesia and Intensive Care, University of Foggia, 71122 Foggia, Italy; (M.R.); (L.M.); (G.C.)
| | - Carlo Alberto Volta
- Department of Translation Medicine and for Romagna, Section of Anesthesia and Intensive Care, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (C.T.); (R.R.); (I.O.); (C.A.V.); (S.S.)
| | - Savino Spadaro
- Department of Translation Medicine and for Romagna, Section of Anesthesia and Intensive Care, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (C.T.); (R.R.); (I.O.); (C.A.V.); (S.S.)
| |
Collapse
|
7
|
Arcos-Legarda J, Tovar A. Mechatronic Design and Active Disturbance Rejection Control of a Bag Valve-Based Mechanical Ventilator. J Med Device 2021. [DOI: 10.1115/1.4051064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
This paper presents the mechatronic (mechanical and control system) design of a functional prototype of a portable mechanical ventilator to treat patients with a compromised respiratory function. The portable ventilator ensures adequate oxygenation and carbon dioxide clearance while avoiding ventilator-induced lung injury (VILI). Oxygen is delivered through the compression of a bag valve (Ambu bag) using a moving strap. Carbon dioxide is cleared through the control of a pinch valve actuated by a low-torque servomotor. The positive end-expiratory pressure (PEEP) is controlled by an adjustable mechanical valve of the system. An Arduino Mega microcontroller board is used in this prototype to control the respiratory variables. All mechanical components as well as sensors, actuators, and control hardware are of common use in robotics and are very inexpensive. The total cost of the prototype built in this work is about $425 U.S. dollars. The design is meant to be replicated and utilized in emergency conditions that involve an overwhelming number of cases, such as COVID-19 treatment, in places with no access to commercial mechanical ventilation (MV) technologies. In order to account for variations in the prototype as built, the software developed for this portable MV applies an active disturbance rejection control (ADRC) strategy. This control strategy is presented as a universal control structure for any mechanical ventilator able to supply air flow with controlled pressure and volume.
Collapse
Affiliation(s)
- Jaime Arcos-Legarda
- Department of Mechatronics Engineering, Universidad de San Buenaventura, Cr. 8h 172-20, Bogotá 111156, Colombia
| | - Andres Tovar
- Department of Mechanical and Energy Engineering, Indiana University–Purdue University Indianapolis, 723 West Michigan Street, SL 260N Indianapolis, IN 46202-5132
| |
Collapse
|
8
|
Spadaro S, Grasso S, Karbing DS, Santoro G, Cavallesco G, Maniscalco P, Murgolo F, Di Mussi R, Ragazzi R, Rees SE, Volta CA, Fogagnolo A. Physiological effects of two driving pressure-based methods to set positive end-expiratory pressure during one lung ventilation. J Clin Monit Comput 2020; 35:1149-1157. [PMID: 32816177 PMCID: PMC7439797 DOI: 10.1007/s10877-020-00582-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
During one-lung ventilation (OLV), titrating the positive end-expiratory pressure (PEEP) to target a low driving pressure (∆P) could reduce postoperative pulmonary complications. However, it is unclear how to conduct PEEP titration: by stepwise increase starting from zero PEEP (PEEPINCREMENTAL) or by stepwise decrease after a lung recruiting manoeuvre (PEEPDECREMENTAL). In this randomized trial, we compared the physiological effects of these two PEEP titration strategies on respiratory mechanics, ventilation/perfusion mismatch and gas exchange. Patients undergoing video-assisted thoracoscopic surgery in OLV were randomly assigned to a PEEPINCREMENTAL or PEEPDECREMENTAL strategy to match the lowest ∆P. In the PEEPINCREMENTAL group, PEEP was stepwise titrated from ZEEP up to 16 cm H2O, whereas in the PEEPDECREMENTAL group PEEP was decrementally titrated, starting from 16 cm H2O, immediately after a lung recruiting manoeuvre. Respiratory mechanics, ventilation/perfusion mismatch and blood gas analyses were recorded at baseline, after PEEP titration and at the end of surgery. Sixty patients were included in the study. After PEEP titration, shunt decreased similarly in both groups, from 50 [39-55]% to 35 [28-42]% in the PEEPINCREMENTAL and from 45 [37-58]% to 33 [25-45]% in the PEEPDECREMENTAL group (both p < 0.001 vs baseline). The resulting ∆P, however, was lower in the PEEPDECREMENTAL than in the PEEPINCREMENTAL group (8 [7-11] vs 10 [9-11] cm H2O; p = 0.03). In the PEEPDECREMENTAL group the PaO2/ FIO2 ratio increased significantly after intervention (from 140 [99-176] to 186 [152-243], p < 0.001). Both the PEEPINCREMENTAL and the PEEPDECREMENTAL strategies were able to decrease intraoperative shunt, but only PEEPDECREMENTAL improved oxygenation and lowered intraoperative ΔP.Clinical trial number NCT03635281; August 2018; "retrospectively registered".
Collapse
Affiliation(s)
- Savino Spadaro
- Department of Morphology, Experimental Medicine and Surgery, Section of Anaesthesia and Intensive Care, Azienda Ospedaliera-Universitaria Sant' Anna, University of Ferrara, Via Aldo Moro, 8, 44124, Ferrara, Italy.
| | - Salvatore Grasso
- Department of Emergency and Organ Transplant (DETO), "Aldo Moro" University of Bari, Bari, Italy
| | - Dan Stieper Karbing
- Respiratory and Critical Care Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Giuseppe Santoro
- Department of Morphology, Experimental Medicine and Surgery, Section of Anaesthesia and Intensive Care, Azienda Ospedaliera-Universitaria Sant' Anna, University of Ferrara, Via Aldo Moro, 8, 44124, Ferrara, Italy
| | - Giorgio Cavallesco
- Department of Morphology, Experimental Medicine and Surgery, Thoracic Surgery, Azienda Ospedaliera-Universitaria Sant' Anna, University of Ferrara, Ferrara, Italy
| | - Pio Maniscalco
- Department of Morphology, Experimental Medicine and Surgery, Thoracic Surgery, Azienda Ospedaliera-Universitaria Sant' Anna, University of Ferrara, Ferrara, Italy
| | - Francesca Murgolo
- Department of Emergency and Organ Transplant (DETO), "Aldo Moro" University of Bari, Bari, Italy
| | - Rosa Di Mussi
- Department of Emergency and Organ Transplant (DETO), "Aldo Moro" University of Bari, Bari, Italy
| | - Riccardo Ragazzi
- Department of Morphology, Experimental Medicine and Surgery, Section of Anaesthesia and Intensive Care, Azienda Ospedaliera-Universitaria Sant' Anna, University of Ferrara, Via Aldo Moro, 8, 44124, Ferrara, Italy
| | - Stephen Edward Rees
- Respiratory and Critical Care Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Carlo Alberto Volta
- Department of Morphology, Experimental Medicine and Surgery, Section of Anaesthesia and Intensive Care, Azienda Ospedaliera-Universitaria Sant' Anna, University of Ferrara, Via Aldo Moro, 8, 44124, Ferrara, Italy
| | - Alberto Fogagnolo
- Department of Morphology, Experimental Medicine and Surgery, Section of Anaesthesia and Intensive Care, Azienda Ospedaliera-Universitaria Sant' Anna, University of Ferrara, Via Aldo Moro, 8, 44124, Ferrara, Italy
| |
Collapse
|
9
|
Yen S, Preissner M, Bennett E, Dubsky S, Carnibella R, Murrie R, Fouras A, Dargaville PA, Zosky GR. Interaction between regional lung volumes and ventilator-induced lung injury in the normal and endotoxemic lung. Am J Physiol Lung Cell Mol Physiol 2020; 318:L494-L499. [PMID: 31940217 DOI: 10.1152/ajplung.00492.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Both overdistension and atelectasis contribute to lung injury and mortality during mechanical ventilation. It has been proposed that combinations of tidal volume and end-expiratory lung volume exist that minimize lung injury linked to mechanical ventilation. The aim of this study was to examine this at the regional level in the healthy and endotoxemic lung. Adult female BALB/c mice were injected intraperitoneally with 10 mg/kg lipopolysaccharide (LPS) in saline or with saline alone. Four hours later, mice were mechanically ventilated for 2 h. Regional specific end-expiratory volume (sEEV) and tidal volume (sVt) were measured at baseline and after 2 h of ventilation using dynamic high-resolution four-dimensional computed tomography images. The regional expression of inflammatory genes was quantified by quantitative PCR. There was a heterogenous response in regional sEEV whereby endotoxemia increased gas trapping at end-expiration in some lung regions. Within the healthy group, there was a relationship between sEEV, sVt, and the expression of Tnfa, where high Vt in combination with high EEV or very low EEV was associated with an increase in gene expression. In endotoxemia there was an association between low sEEV, particularly when this was combined with moderate sVt, and high expression of IL6. Our data suggest that preexisting systemic inflammation modifies the relationship between regional lung volumes and inflammation and that although optimum EEV-Vt combinations to minimize injury exist, further studies are required to identify the critical inflammatory mediators to assess and the effect of different injury types on the response.
Collapse
Affiliation(s)
- Seiha Yen
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Melissa Preissner
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia
| | - Ellen Bennett
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Stephen Dubsky
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia
| | | | - Rhiannon Murrie
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria, Australia
| | | | - Peter A Dargaville
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Graeme R Zosky
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.,Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
10
|
Abstract
Our current understanding of protective measures for avoiding ventilator-induced lung injury (VILI) has evolved from targeting low tidal volumes to lowering plateau and driving pressure. Even when pressures across the lung are reliably estimated, however, pressures alone cannot accurately gauge the injury risk; apart from flow rate, inspired oxygen fraction, and currently unmeasurable features of the mechanical microenvironment such as geometry, structural fragility, and vascular perfusion, the frequency with which high-risk tidal cycles are applied must help determine the intensity of potentially damaging energy application. Recognition of a strain threshold for damage by transpulmonary pressure, coupled with considerations of total energy load and strain intensity, has helped shape the unifying concept of VILI generation dependent upon the power transferred from the ventilator to the injured lungs. Currently, under-recognized contributors to the injury process must be addressed to minimize the risk imposed by ventilatory support.
Collapse
Affiliation(s)
- John J Marini
- University of Minnesota, Regions Hospital MS 11203B, 640 Jackson St, St. Paul, MN, 55101, USA.
| |
Collapse
|
11
|
van der Zee P, Gommers D. Recruitment Maneuvers and Higher PEEP, the So-Called Open Lung Concept, in Patients with ARDS. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:73. [PMID: 30850004 PMCID: PMC6408810 DOI: 10.1186/s13054-019-2365-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2019. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2019. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901.
Collapse
Affiliation(s)
- Philip van der Zee
- Department of Adult Intensive Care Medicine, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Diederik Gommers
- Department of Adult Intensive Care Medicine, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
12
|
Rodgers JL, Iyer D, Rodgers LE, Vanthenapalli S, Panguluri SK. Impact of hyperoxia on cardiac pathophysiology. J Cell Physiol 2019; 234:12595-12603. [PMID: 30652312 DOI: 10.1002/jcp.28136] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/20/2018] [Indexed: 01/09/2023]
Abstract
Mechanical ventilation with high oxygen therapy (hyperoxia) is widely implemented in critical care and ICU settings. Although supplemental oxygen is beneficial to treat hypoxia, its use is also associated with poor outcomes and high mortality in patients. Lung injury due to hyperoxia exposure has been well-documented in patients, including in adults and neonates. Thus, lung injury due to hyperoxia has been extensively researched in both preclinical and clinical studies. However, hyperoxia has also been shown to be associated with hemodynamic changes in patients in ICU, including reductions in heart rate, stroke volume, and cardiac output. In addition, certain experimental studies report that hyperoxia exposure in neonates results in cardiac dysfunction in later adult life. Despite this, until recently, the impact of hyperoxia within the heart has not been well studied, or reported, specifically in adult experimental models. To close this significant gap, our lab has sought to clarify hyperoxia-induced cardiac pathophysiology in adult murine models. This review discusses the current findings regarding the cardiovascular impact of hyperoxia exposure.
Collapse
Affiliation(s)
- Jennifer L Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Drishya Iyer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Lydia E Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Sahit Vanthenapalli
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Siva K Panguluri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| |
Collapse
|
13
|
Vasques F, Duscio E, Pasticci I, Romitti F, Vassalli F, Quintel M, Gattinoni L. Is the mechanical power the final word on ventilator-induced lung injury?-we are not sure. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:395. [PMID: 30460269 DOI: 10.21037/atm.2018.08.17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Francesco Vasques
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| | - Eleonora Duscio
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| | - Iacopo Pasticci
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| | - Federica Romitti
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| | - Francesco Vassalli
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| | - Michael Quintel
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| | - Luciano Gattinoni
- Department of Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| |
Collapse
|