1
|
Zhang J, Zhang C, Miao L, Meng Z, Gu N, Song G. Stigmasterol alleviates allergic airway inflammation and airway hyperresponsiveness in asthma mice through inhibiting substance-P receptor. PHARMACEUTICAL BIOLOGY 2023; 61:449-458. [PMID: 36788676 PMCID: PMC9930798 DOI: 10.1080/13880209.2023.2173252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/03/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT Stigmasterol has significant anti-arthritis and anti-inflammatory effects, but its role in immune and inflammatory diseases is still unclear. OBJECTIVE The potential advantages of stigmasterol in asthma were explored in IL-13-induced BEAS-2B cells and asthmatic mice. MATERIALS AND METHODS The optimal target of stigmasterol was confirmed in asthma. After detecting the cytotoxicity of stigmasterol in BEAS-2B cells, 10 μg/mL and 20 μg/mL stigmasterol were incubated with the BEAS-2B cell model for 48 h, and anti-inflammation and antioxidative stress were verified. Asthmatic mice were induced by OVA and received 100 mg/kg stigmasterol for 7 consecutive days. After 28 days, lung tissues and BAL fluid were collected for the following study. To further verify the role of NK1-R, 0.1 μM WIN62577 (NK1-R specific antagonist), and 1 μM recombinant human NK1-R protein were applied. RESULTS NK1-R was the potential target of stigmasterol. When the concentration of stigmasterol is 20 μg/mL, the survival rate of BEAS-2B cells is about 98.4%, which is non-toxic. Stigmasterol exerted anti-inflammation and antioxidant stress in a dose-dependent manner and decreased NK1-R expression in IL-13-induced BEAS-2B. Meanwhile, in vivo assay also indicated the anti-inflammation and antioxidant stress of stigmasterol after OVA challenge. Stigmasterol inhibited inflammation infiltration and mucus hypersecretion, and NK1-R expression. DISCUSSION AND CONCLUSIONS The protective effect of stigmaterol on asthma and its underlying mechanism have been discussed in depth, providing a theoretical basis and more possibilities for its treatment of asthma.
Collapse
Affiliation(s)
- Jimei Zhang
- Department of Material supply, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Chonghong Zhang
- Department of Material supply, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Li Miao
- Department of Cardiology, First Ward, Yantai Yeda Hospital, Yantai, Shandong, China
| | - Zimin Meng
- Department of Cardiovascular medicine, Weihai Municipal Hospital, Weihai, Shandong, China
| | - Ning Gu
- Department of Cardiovascular medicine, Weihai Municipal Hospital, Weihai, Shandong, China
| | - Guifang Song
- Department of Cardiology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
2
|
Xia SB, Tian ZB, Zhang W, Zhang H. NORAD Promotes the Viability, Migration, and Phenotypic Switch of Human Vascular Smooth Muscle Cells during Aortic Dissection via LIN28B-Mediated TGF- β Promotion and Subsequent Enhanced Glycolysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5333928. [PMID: 35971448 PMCID: PMC9375693 DOI: 10.1155/2022/5333928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 12/01/2022]
Abstract
Glucose metabolism reprogramming is an important reason for the functional remodeling, growth, and migration of vascular smooth muscle cells (VSMCs). It is also an important basis for the occurrence and development of aortic dissection (AD), but the specific regulatory factors are not clear. Noncoding RNA activated by DNA damage (NORAD) is dysfunctional in many diseases, but the role of NORAD in AD etiology is unclear. We first established a vascular remodeling cell model of AD, and the expression of NORAD in VSMCs was significantly increased. Functional experiments showed that inhibition of NORAD could downregulate the proliferation and migration of VSMCs. Meanwhile, silencing NORAD could also inhibit the flux of glycolysis, suggesting that NORAD may aggravate AD by promoting glycolysis. In addition, mechanism studies have shown that NORAD can exert VSMCs-regulating function by recruiting LIN28B to bind to TGF-β mRNA, which subsequently facilitates the expression of TGF-β1 (transforming growth factor β1). The recovery experiment also showed that overexpression of TGF-β could reverse the inhibitory effect of NORAD knockdown on VSMCs in terms of proliferation, migration, and glycolysis. Collectively, these results indicated that the NORAD/LIN28B/TGF-β axis promoted cell proliferation and migration through regulating aerobic glycolysis in VSMCs. Therefore, NORAD may regulate the occurrence of AD by affecting the reprogramming of glucose metabolism, and NORAD can be recognized as a good target for VSMC phenotypic intervention and AD treatment.
Collapse
Affiliation(s)
- Shi-bo Xia
- Department of Vascular Surgery, Changhai Hospital, Second (Navy) Military Medical University, Shanghai 200433, China
| | - Zhuang-bo Tian
- Department of Interventional Vascular Surgery, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, China
| | - Wenbo Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Hao Zhang
- Department of Vascular Surgery, Changhai Hospital, Second (Navy) Military Medical University, Shanghai 200433, China
| |
Collapse
|
3
|
Banerjee P, Balraj P, Ambhore NS, Wicher SA, Britt RD, Pabelick CM, Prakash YS, Sathish V. Network and co-expression analysis of airway smooth muscle cell transcriptome delineates potential gene signatures in asthma. Sci Rep 2021; 11:14386. [PMID: 34257337 PMCID: PMC8277837 DOI: 10.1038/s41598-021-93845-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Airway smooth muscle (ASM) is known for its role in asthma exacerbations characterized by acute bronchoconstriction and remodeling. The molecular mechanisms underlying multiple gene interactions regulating gene expression in asthma remain elusive. Herein, we explored the regulatory relationship between ASM genes to uncover the putative mechanism underlying asthma in humans. To this end, the gene expression from human ASM was measured with RNA-Seq in non-asthmatic and asthmatic groups. The gene network for the asthmatic and non-asthmatic group was constructed by prioritizing differentially expressed genes (DEGs) (121) and transcription factors (TFs) (116). Furthermore, we identified differentially connected or co-expressed genes in each group. The asthmatic group showed a loss of gene connectivity due to the rewiring of major regulators. Notably, TFs such as ZNF792, SMAD1, and SMAD7 were differentially correlated in the asthmatic ASM. Additionally, the DEGs, TFs, and differentially connected genes over-represented in the pathways involved with herpes simplex virus infection, Hippo and TGF-β signaling, adherens junctions, gap junctions, and ferroptosis. The rewiring of major regulators unveiled in this study likely modulates the expression of gene-targets as an adaptive response to asthma. These multiple gene interactions pointed out novel targets and pathways for asthma exacerbations.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Premanand Balraj
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | | | - Sarah A Wicher
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Rodney D Britt
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Christina M Pabelick
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Sudro 108A, Fargo, ND, 58108-6050, USA.
| |
Collapse
|
4
|
Santos RVC, Cunha EGC, de Mello GSV, Rizzo JÂ, de Oliveira JF, do Carmo Alves de Lima M, da Rocha Pitta I, da Rocha Pitta MG, de Melo Rêgo MJB. New Oxazolidines Inhibit the Secretion of IFN-γ and IL-17 by PBMCS from Moderate to Severe Asthmatic Patients. Med Chem 2021; 17:289-297. [PMID: 32914717 DOI: 10.2174/1573406416666200910151950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Moderate to severe asthma could be induced by diverse proinflammatory cytokines, as IL-17 and IFN-γ, which are also related to treatment resistance and airway hyperresponsiveness. Oxazolidines emerged as a novel approach for asthma treatment, since some chemical peculiarities were suggested by previous studies. OBJECTIVE The present study aimed to evaluate the IL-17A and IFN-γ modulatory effect of two new oxazolidine derivatives (LPSF/NB-12 and -13) on mononucleated cells of patients with moderate and severe asthma. METHODS The study first looked at potential targets for oxazolidine derivatives using SWISS-ADME. After the synthesis of the compounds, cytotoxicity and cytokine levels were analyzed. RESULTS We demonstrated that LPSF/NB-12 and -13 reduced IFN-γ and IL-17 production in peripheral blood mononucleated cells from asthmatic patients in a concentrated manner. Our in silico analysis showed the neurokinin-1 receptor as a common target for both compounds, which is responsible for diverse proinflammatory effects of moderate and severe asthma. CONCLUSION The work demonstrated a novel approach against asthma, which deserves further studies of its mechanisms of action.
Collapse
Affiliation(s)
- Renata Virgínia Cavalcanti Santos
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Eudes Gustavo Constantino Cunha
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Gabriela Souto Vieira de Mello
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - José Ângelo Rizzo
- Servico de Pneumologia, Hospital das Clinicas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Jamerson Ferreira de Oliveira
- Laboratorio de Quimica e Inovacao Terapeutica (LQIT), Departamento de Antibioticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Maria do Carmo Alves de Lima
- Laboratorio de Quimica e Inovacao Terapeutica (LQIT), Departamento de Antibioticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Ivan da Rocha Pitta
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Maira Galdino da Rocha Pitta
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Moacyr Jesus Barreto de Melo Rêgo
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| |
Collapse
|