1
|
Desai R, Sachdeva S, Jain A, Rizvi B, Fong HK, Raina J, Itare V, Alukal T, Jain A, Aggarwal A, Kumar G, Sachdeva R. Comparison of Percutaneous Coronary Intervention Outcomes Among Patients With Obstructive Sleep Apnea, Chronic Obstructive Pulmonary Disease Overlap, and Pickwickian Syndrome (Obesity Hypoventilation Syndrome). Cureus 2022; 14:e24816. [PMID: 35686280 PMCID: PMC9170433 DOI: 10.7759/cureus.24816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background Obstructive sleep apnea (OSA) is often present in coronary artery disease patients and confers a high risk of complications following percutaneous coronary interventions (PCI). The impact of two commonly associated comorbid conditions, chronic obstructive pulmonary disease (COPD) and obesity hypoventilation syndrome (OHS, Pickwickian syndrome) in OSA patients undergoing PCI has never been studied. Methods The National Inpatient Sample (NIS; 2007-2014) was queried using the International Classification of Diseases, Clinical Modification 9 (ICD-9-CM) codes to compare baseline characteristics, comorbidities, and outcomes in adults undergoing PCI with OSA, COPD-overlap syndrome, and OSA+OHS. Results Of a total of 4,792,177 PCI-related inpatient encounters, OSA, OSA-COPD overlap syndrome, and OSA+OHS were found to be present in 153,706 (median age 62 years, 79.4% male), 65135 (median age 65 years, 66.0% male), and 2291 (median age 63 years, 58.2% males) patients, respectively. The OHS+OSA cohort, when compared to the COPD-OSA and OSA cohorts, was found to have the worst outcomes in terms of all-cause mortality (2.8% vs. 1.5% vs. 1.1%), hospital stay (median 6 vs. 3 vs. 2 days), hospital charges ($147, 209 vs. $101,416 vs. $87,983). Complications, including cardiogenic shock (7.3% vs. 3.4% vs. 2.6%), post-procedural myocardial infarction (11.2% vs. 7.1% vs. 6.0%), iatrogenic cardiac complications (6.1% vs. 3.5% vs. 3.7%), respiratory failure, acute kidney injury, infections, and pulmonary embolism, were also significantly higher in patients with OHS+OSA. Adjusted multivariable analysis revealed equivalent results with OHS+OSA having worse outcomes than OSA-COPD and OSA. Conclusion Concomitant OHS and COPD were linked to worse clinical outcomes in patients with OSA undergoing PCI. Future prospective studies are warranted to fully understand related pathophysiology, evaluate and validate long-term outcomes, and formulate effective preventive and management strategies.
Collapse
|
2
|
Zheng Y, Phillips CL, Sivam S, Wong K, Grunstein RR, Piper AJ, Yee BJ. Cardiovascular disease in obesity hypoventilation syndrome - A review of potential mechanisms and effects of therapy. Sleep Med Rev 2021; 60:101530. [PMID: 34425490 DOI: 10.1016/j.smrv.2021.101530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/21/2021] [Accepted: 07/05/2021] [Indexed: 11/29/2022]
Abstract
Cardiovascular disease is common in patients with obesity hypoventilation syndrome (OHS) and accounts in part for their poor prognosis. This narrative review article examines the epidemiology of cardiovascular disease in obesity hypoventilation syndrome, explores possible contributing factors and the effects of therapy. All studies that included cardiovascular outcomes and biomarkers were included. Overall, there is a higher burden of cardiovascular disease and cardiovascular risk factors among patients with obesity hypoventilation syndrome. In addition to obesity and sleep-disordered breathing, there are several other pathophysiological mechanisms that contribute to higher cardiovascular morbidity and mortality in OHS. There is evidence emerging that positive airway pressure therapy and weight loss have beneficial effects on the cardiovascular system in obesity hypoventilation syndrome patients, but further research is needed to clarify whether this translates to clinically important outcomes.
Collapse
Affiliation(s)
- Yizhong Zheng
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Australia; Faculty of Medicine and Health, University of Sydney, Australia; Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Australia; Department of Respiratory and Sleep Medicine, St George Hospital, Australia.
| | - Craig L Phillips
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Australia; Faculty of Medicine and Health, University of Sydney, Australia; Department of Respiratory and Sleep Medicine, Royal North Shore Hospital, Australia
| | - Sheila Sivam
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Australia; Faculty of Medicine and Health, University of Sydney, Australia; Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Australia
| | - Keith Wong
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Australia; Faculty of Medicine and Health, University of Sydney, Australia; Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Australia
| | - Ronald R Grunstein
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Australia; Faculty of Medicine and Health, University of Sydney, Australia
| | - Amanda J Piper
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Australia; Faculty of Medicine and Health, University of Sydney, Australia; Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Australia
| | - Brendon J Yee
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, University of Sydney, Australia; Faculty of Medicine and Health, University of Sydney, Australia; Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Australia
| |
Collapse
|
3
|
Charles S, Natarajan J. Integrated regulatory network based on lncRNA-miRNA-mRNA-TF reveals key genes and sub-networks associated with dilated cardiomyopathy. Comput Biol Chem 2021; 92:107500. [PMID: 33940530 DOI: 10.1016/j.compbiolchem.2021.107500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/21/2021] [Indexed: 11/19/2022]
Abstract
Dilated Cardiomyopathy (DCM) is a multifactorial condition often leading to heart failure in many clinical cases. Due to the high number of DCMincidence reported as familial, a gene level network based study was conducted utilizing high throughput next generation sequencing data. We exploited the exome and transcriptome sequencing data in NCBI-SRA database to construct a high confidence scale-free regulatory network consisting of lncRNA, miRNA, mRNA and Transcription Factors (TFs). Analysis of RNA-Seq data revealed 477 differentially expressed coding transcripts and 77 lncRNAs. 268 miRNAs regulated either lncRNAs or mRNAs. Out of the 477 coding transcripts that are deregulated, 82 were TFs. We identified three major hub nodeslncRNA (XIST), miRNA (hsa-miR-195-5p) and mRNA (NOVA1) from the network. We also found putative disease associations of DCM with diabetes and DCM with hypoventillation syndrome. Five highly connected modules were also identified from the network. The hubs showed significant connectivity with the modules.Through this study we were able to gain insights into the underlying lncRNA-miRNA-mRNA-TF network. From a high throughput dataset we have isolated a handful of probable targets that may be utilized for studying the mechanisms of DCM development and progression to heart failure.
Collapse
Affiliation(s)
- Sona Charles
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamilnadu, India
| | - Jeyakumar Natarajan
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamilnadu, India.
| |
Collapse
|
5
|
Masa JF, Mokhlesi B, Benítez I, Mogollon MV, Gomez de Terreros FJ, Sánchez-Quiroga MÁ, Romero A, Caballero-Eraso C, Alonso-Álvarez ML, Ordax-Carbajo E, Gomez-Garcia T, González M, López-Martín S, Marin JM, Martí S, Díaz-Cambriles T, Chiner E, Egea C, Barca J, Vázquez-Polo FJ, Negrín MA, Martel-Escobar M, Barbe F, Corral J. Echocardiographic Changes with Positive Airway Pressure Therapy in Obesity Hypoventilation Syndrome. Long-Term Pickwick Randomized Controlled Clinical Trial. Am J Respir Crit Care Med 2020; 201:586-597. [PMID: 31682462 DOI: 10.1164/rccm.201906-1122oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rationale: Obesity hypoventilation syndrome (OHS) has been associated with cardiac dysfunction. However, randomized trials assessing the impact of long-term noninvasive ventilation (NIV) or continuous positive airway pressure (CPAP) on cardiac structure and function assessed by echocardiography are lacking.Objectives: In a prespecified secondary analysis of the largest multicenter randomized controlled trial of OHS (Pickwick Project; N = 221 patients with OHS and coexistent severe obstructive sleep apnea), we compared the effectiveness of three years of NIV and CPAP on structural and functional echocardiographic changes.Methods: At baseline and annually during three sequential years, patients underwent transthoracic two-dimensional and Doppler echocardiography. Echocardiographers at each site were blinded to the treatment allocation. Statistical analysis was performed using a linear mixed-effects model with a treatment group and repeated measures interaction to determine the differential effect between CPAP and NIV.Measurements and Main Results: A total of 196 patients were analyzed: 102 were treated with CPAP and 94 were treated with NIV. Systolic pulmonary artery pressure decreased from 40.5 ± 1.47 mm Hg at baseline to 35.3 ± 1.33 mm Hg at three years with CPAP, and from 41.5 ± 1.56 mm Hg to 35.5 ± 1.42 with NIV (P < 0.0001 for longitudinal intragroup changes for both treatment arms). However, there were no significant differences between groups. NIV and CPAP therapies similarly improved left ventricular diastolic dysfunction and reduced left atrial diameter. Both NIV and CPAP improved respiratory function and dyspnea.Conclusions: In patients with OHS who have concomitant severe obstructive sleep apnea, long-term treatment with NIV and CPAP led to similar degrees of improvement in pulmonary hypertension and left ventricular diastolic dysfunction.Clinical trial registered with www.clinicaltrials.gov (NCT01405976).
Collapse
Affiliation(s)
- Juan F Masa
- Respiratory Department, San Pedro de Alcántara Hospital, Cáceres, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz, Spain
| | - Babak Mokhlesi
- Medicine/Pulmonary and Critical Care, University of Chicago, Chicago, Illinois
| | - Iván Benítez
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Institut de Recerca Biomédica de Lleida (IRBLLEIDA), Lleida, Spain
| | | | - Francisco Javier Gomez de Terreros
- Respiratory Department, San Pedro de Alcántara Hospital, Cáceres, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz, Spain
| | - Maria Ángeles Sánchez-Quiroga
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz, Spain.,Respiratory Department, Virgen del Puerto Hospital, Plasencia, Cáceres, Spain
| | - Auxiliadora Romero
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, Spain
| | - Candela Caballero-Eraso
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Sevilla, Spain
| | - Maria Luz Alonso-Álvarez
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Respiratory Department, University Hospital, Burgos, Spain
| | - Estrella Ordax-Carbajo
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Respiratory Department, University Hospital, Burgos, Spain
| | - Teresa Gomez-Garcia
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Respiratory Department, IIS Fundación Jiménez Díaz, Madrid, Spain
| | - Mónica González
- Respiratory Department, Valdecilla Hospital, Santander, Spain
| | | | - José M Marin
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Respiratory Department, Miguel Servet Hospital, Zaragoza, Spain
| | - Sergi Martí
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Respiratory Department, Valld'Hebron Hospital, Barcelona, Spain
| | - Trinidad Díaz-Cambriles
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Respiratory Department, Doce de Octubre Hospital, Madrid, Spain
| | - Eusebi Chiner
- Respiratory Department, San Juan Hospital, Alicante, Spain
| | - Carlos Egea
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Respiratory Department, Alava University Hospital IRB, Vitoria, Spain
| | - Javier Barca
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz, Spain.,Nursing Department, Extremadura University, Cáceres, Spain; and
| | | | - Miguel A Negrín
- Department of Quantitative Methods, University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - María Martel-Escobar
- Department of Quantitative Methods, University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Ferran Barbe
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Institut de Recerca Biomédica de Lleida (IRBLLEIDA), Lleida, Spain
| | - Jaime Corral
- Respiratory Department, San Pedro de Alcántara Hospital, Cáceres, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz, Spain
| | | |
Collapse
|
8
|
BaHammam AS, Almeneessier AS. Is Obesity Hypoventilation Syndrome A Postmenopausal Disorder? Open Respir Med J 2019; 13:51-54. [PMID: 31956377 PMCID: PMC6952852 DOI: 10.2174/1874306401913010051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/21/2019] [Accepted: 10/15/2019] [Indexed: 11/22/2022] Open
Abstract
Previous studies have assessed the role of gender and menopause in Obstructive Sleep Apnea (OSA). It is well known that menopause is a major risk factor for OSA. However, analogous studies on obesity Hypoventilation Syndrome (OHS) are limited. Recent studies have suggested that OHS is more prevalent in postmenopausal women. Moreover, women with OHS seem to have excess comorbidities, including hypothyroidism, hypertension, pulmonary hypertension, and diabetes mellitus, compared to men. In the present perspective, we discuss recent data on the prevalence and comorbidities associated with OHS in women, as well as the use of noninvasive ventilation in women with OHS, and try to answer the question, “Is OHS a disorder of postmenopausal women?”
Collapse
Affiliation(s)
- Ahmed S BaHammam
- Department of Medicine, College of Medicine, The University Sleep Disorders Center, King Saud University, Riyadh, Saudi Arabia.,Prince Naif Health Research Center, King Saud University, Riyadh, Saudi Arabia
| | - Aljohara S Almeneessier
- Prince Naif Health Research Center, King Saud University, Riyadh, Saudi Arabia.,Prince Naif Health Research Center, King Saud University, Riyadh, Saudi Arabia.,Prince Naif Health Research Center, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|