1
|
Cavero-Redondo I, Moreno-Herraiz N, Del Saz-Lara A, Otero-Luis I, Recio-Rodriguez JI, Saz-Lara A. Effect of adding PCSK9 inhibitors to lipid-lowering interventions on arterial stiffness: A systematic review and meta-analysis. Eur J Clin Invest 2024; 54:e14269. [PMID: 39031778 DOI: 10.1111/eci.14269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Atherosclerosis, a leading cause of mortality, necessitates effective management of hypercholesterolemia, specifically elevated low-density lipoprotein cholesterol (LDL-C). The emergence of proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) has revolutionised lipid-lowering. PCSK9i demonstrates substantial LDL-C reduction and cardiovascular benefits, particularly in statin-intolerant or nonresponsive individuals. However, the potential pleiotropic effects of PCSK9i, especially on arterial stiffness, remain a subject of investigation. This systematic review and meta-analysis seek to provide a nuanced understanding of the potential pleiotropic effects of PCSK9i, specifically on arterial health. The primary objective was to analyse the influence of PCSK9i on arterial stiffness, extending beyond traditional lipid-lowering metrics and contributing to a more comprehensive approach to cardiovascular risk reduction. METHODS A systematic search was conducted across major databases, clinical trial registries and grey literature. Inclusion criteria comprised adults in prospective cohort studies undergoing PCSK9i augmentation in lipid-lowering therapy, with a focus on arterial stiffness measured by pulse wave velocity (PWv). Random-effects meta-analyses, sensitivity analyses and meta-regression models were employed to assess the pooled effect of adding PCSK9i to lipid-lowering interventions on arterial stiffness. RESULTS Five studies (158 participants) met the inclusion criteria, demonstrating a significant reduction in PWv (mean difference: -2.61 m/s [95% CI: -3.70, -1.52]; ES: -1.62 [95% CI: -2.53, -.71]) upon adding PCSK9i to lipid-lowering interventions. Subgroup analysis and meta-regression models suggested potential sex-based and baseline PWv-dependent variations, emphasising patient-specific characteristics. CONCLUSION The meta-analysis provides robust evidence that adding PCSK9i to lipid-lowering interventions significantly improves arterial stiffness, indicating broader vascular benefits beyond LDL-C reduction.
Collapse
Affiliation(s)
- I Cavero-Redondo
- CarVasCare Research Group (2023-GRIN-34459), Faculta de Enfermería de Cuenca, Universidad de Castilla-La Mancha, Cuenca, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - N Moreno-Herraiz
- CarVasCare Research Group (2023-GRIN-34459), Faculta de Enfermería de Cuenca, Universidad de Castilla-La Mancha, Cuenca, Spain
| | - A Del Saz-Lara
- CarVasCare Research Group (2023-GRIN-34459), Faculta de Enfermería de Cuenca, Universidad de Castilla-La Mancha, Cuenca, Spain
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, Spain
- Laboratory of Functional Foods, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, Madrid, Spain
| | - I Otero-Luis
- CarVasCare Research Group (2023-GRIN-34459), Faculta de Enfermería de Cuenca, Universidad de Castilla-La Mancha, Cuenca, Spain
| | - J I Recio-Rodriguez
- Faculty of Nursing and Physiotherapy, University of Salamanca, Salamanca, Spain
- Primary Care Research Unit of Salamanca (APISAL), Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - A Saz-Lara
- CarVasCare Research Group (2023-GRIN-34459), Faculta de Enfermería de Cuenca, Universidad de Castilla-La Mancha, Cuenca, Spain
| |
Collapse
|
2
|
Shyamala N, Kongettira CL, Puranam K, Kupsal K, Kummari R, Padala C, Hanumanth SR. In silico identification of single nucleotide variations at CpG sites regulating CpG island existence and size. Sci Rep 2022; 12:3574. [PMID: 35246549 PMCID: PMC8897451 DOI: 10.1038/s41598-022-05198-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/03/2022] [Indexed: 12/20/2022] Open
Abstract
Genetic and epigenetic modifications of genes involved in the key regulatory pathways play a significant role in the pathophysiology and progression of multifactorial diseases. The present study is an attempt to identify single nucleotide variations (SNVs) at CpG sites of promoters of ACAT1, APOB, APOE, CYBA, FAS, FLT1, KSR2, LDLR, MMP9, PCSK9, PHOX2A, REST, SH2B3, SORT1 and TIMP1 genes influencing CpG island (CGI) existence and size associated with the pathophysiology of Diabetes mellitus, Coronary artery disease and Cancers. Promoter sequences located between -2000 to + 2000 bp were retrieved from the EPDnew database and predicted the CpG island using MethPrimer. Further, SNVs at CpG sites were accessed from NCBI, Ensembl while transcription factor (TF) binding sites were accessed using AliBaba2.1. CGI existence and size were determined for each SNV at CpG site with respect to wild type and variant allele by MethPrimer. A total of 200 SNVs at CpG sites were analyzed from the promoters of ACAT1, APOB, APOE, CYBA, FAS, FLT1, KSR2, LDLR, MMP9, PCSK9, PHOX2A, REST, SH2B3, SORT1 and TIMP1 genes. Of these, only 17 (8.5%) SNVs were found to influence the loss of CGI while 70 (35%) SNVs were found to reduce the size of CGI. It has also been found that 59% (10) of CGI abolishing SNVs are showing differences in binding of TFs. The findings of the study suggest that the candidate SNVs at CpG sites regulating CGI existence and size might influence the DNA methylation status and expression of genes involved in molecular pathways associated with several diseases. The insights of the present study may pave the way for new experimental studies to undertake challenges in DNA methylation, gene expression and protein assays.
Collapse
Affiliation(s)
- Nivas Shyamala
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana State, India
| | - Chaitra Lava Kongettira
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana State, India
| | - Kaushik Puranam
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana State, India
| | - Keerthi Kupsal
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana State, India
| | - Ramanjaneyulu Kummari
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana State, India
| | - Chiranjeevi Padala
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana State, India
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana State, India
| | - Surekha Rani Hanumanth
- Department of Genetics and Biotechnology, University College of Science, Osmania University, Hyderabad, 500007, Telangana State, India.
| |
Collapse
|
3
|
Exenatide improves antioxidant capacity and reduces the expression of LDL receptors and PCSK9 in human insulin-secreting 1.1E7 cell line subjected to hyperglycemia and oxidative stress. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2021-0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction
GLP-1 receptor agonists (e.g., exenatide) are novel drugs used in the treatment of diabetes. These drugs, working with other mechanisms of action, improve glycemic control by increasing secretion of insulin and improving survival of pancreatic islet beta cells. Alterations in the oxidative stress level or the expression of proteins associated with cholesterol uptake might be responsible for those findings. Currently, there are few in vitro studies on the impact of exenatide antioxidant capacity in human islet beta cell lines and none that assess the influence of exenatide on LDL receptors and PCSK9 under hyperglycemia and oxidative stress. Therefore, we evaluated the impact of exenatide on antioxidant capacity, insulin secretion, and proteins involved in cholesterol metabolism.
Materials and Method
An in vitro culture of insulin-secreting cells 1.1E7 was subjected to hyperglycemia and oxidative stress. Assessment was made of the expression of enzymes associated with oxidative stress (NADPH oxidase, catalase, glutathione peroxidase, superoxide dismutase, iNOS) and cholesterol uptake (LDL receptors, PCSK9). Additionally, insulin and nitrite levels in culture media were quantified.
Results
We showed that exenatide improves expression of catalase and reduces the amount of nitrite in cell cultures in a protein kinase A–dependent manner. Those results were accompanied by a drop in the expression of LDL receptors and PCSK9. Insulin secretion was modestly increased in the culture condition.
Conclusions
Our findings show potential protective mechanisms exerted by exenatide in human insulin-secreting pancreatic beta cell line (1.1E7), which may be exerted through increased antioxidant capacity and reduced accumulation of cholesterol.
Collapse
|
4
|
Maligłówka M, Bułdak Ł, Okopień B, Bołdys A. The consequences of PCSK9 inhibition in selected tissues. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.9127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is one of nine members of the proprotein
convertase family. These serine proteases play a pivotal role in the post-translational
modification of proteins and the activation of hormones, enzymes, transcription factors and
growth factors. As a result, they participate in many physiological processes like embryogenesis,
activity of central nervous system and lipid metabolism. Scientific studies show
that the family of convertases is also involved in the pathogenesis of viral and bacterial
infections, osteoporosis, hyperglycaemia, cardiovascular diseases, neurodegenerative disorders
and cancer. The inhibition of PCSK9 by two currently approved for use monoclonal
antibodies (alirocumab, evolocumab) slows down the degradation of low-density lipoprotein
cholesterol receptors (LDLRs). This leads to increased density of LDLRs on the surface
of hepatocytes, resulting in decreased level of low-density lipoprotein cholesterol (LDL-C)
in the bloodstream, which is connected with the reduction of cardiovascular risk. PCSK9 inhibitors (PCSK9i) were created for the patients who could not achieve appropriate level
of LDL-C using current statin and ezetimibe therapy. It seems that high therapeutic efficacy
of PCSK9i will make them more common in the clinical use. The pleiotropic effects
of previously mentioned lipid-lowering therapies were the reasons for literature review of
possible positive and negative effects of PCSK9 inhibition beyond cholesterol metabolism.
Collapse
Affiliation(s)
- Mateusz Maligłówka
- Katedra Farmakologii, Klinika Chorób Wewnętrznych i Farmakologii Klinicznej, Wydział Nauk Medycznych Śląskiego Uniwersytetu Medycznego w Katowicach
| | - Łukasz Bułdak
- Katedra Farmakologii, Klinika Chorób Wewnętrznych i Farmakologii Klinicznej, Wydział Nauk Medycznych Śląskiego Uniwersytetu Medycznego w Katowicach
| | - Bogusław Okopień
- Katedra Farmakologii, Klinika Chorób Wewnętrznych i Farmakologii Klinicznej, Wydział Nauk Medycznych Śląskiego Uniwersytetu Medycznego w Katowicach
| | - Aleksandra Bołdys
- Katedra Farmakologii, Klinika Chorób Wewnętrznych i Farmakologii Klinicznej, Wydział Nauk Medycznych Śląskiego Uniwersytetu Medycznego w Katowicach
| |
Collapse
|