1
|
Jiang Z, Zhou W, Tian X, Zou P, Li N, Zhang C, Li Y, Liu G. A Protective Role of Canonical Wnt/ β-Catenin Pathway in Pathogenic Bacteria-Induced Inflammatory Responses. Mediators Inflamm 2024; 2024:8869510. [PMID: 38445290 PMCID: PMC10914433 DOI: 10.1155/2024/8869510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/04/2023] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
Inflammation is a complex host defensive response against various disease-associated pathogens. A baseline extent of inflammation is supposed to be tightly associated with a sequence of immune-modulated processes, resulting in the protection of the host organism against pathogen invasion; however, as a matter of fact is that an uncontrolled inflammatory cascade is the main factor responsible for the host damage, accordingly suggesting a significant and indispensable involvement of negative feedback mechanism in modulation of inflammation. Evidence accumulated so far has supported a repressive effect of the canonical Wnt/β-catenin pathway on microbial-triggered inflammation via diverse mechanisms, although that consequence is dependent on the cellular context, types of stimuli, and cytokine environment. It is of particular interest and importance to comprehend the precise way in which the Wnt/β-catenin pathway is activated, due to its essential anti-inflammatory properties. It is assumed that an inflammatory milieu is necessary for initiating and activating this signaling, implying that Wnt activity is responsible for shielding tissues from overwhelming inflammation, thus sustaining a balanced physiological condition against bacterial infection. This review gathers the recent efforts to elucidate the mechanistic details through how Wnt/β-catenin signaling modulates anti-inflammatory responses in response to bacterial infection and its interactions with other inflammatory signals, which warrants further study for the development of specific interventions for the treatment of inflammatory diseases. Further clinical trials from different disease settings are required.
Collapse
Affiliation(s)
- Zhongjia Jiang
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang 110034, China
- Key Laboratory of Environment Pollution and Microecology of Liaoning Province, Shenyang 110034, China
| | - Weiping Zhou
- Department of Pathogen Biology, Shenyang Medical College, Shenyang 110034, China
| | - Xing Tian
- Department of Physiology, Shenyang Medical College, Shenyang 110034, China
| | - Peng Zou
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang 110034, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang 110034, China
| | - Chunmeng Zhang
- Department of Pathogen Biology, Shenyang Medical College, Shenyang 110034, China
| | - Yanting Li
- Department of Pathogen Biology, Shenyang Medical College, Shenyang 110034, China
| | - Guangyan Liu
- Key Laboratory of Environment Pollution and Microecology of Liaoning Province, Shenyang 110034, China
- Department of Pathogen Biology, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
2
|
Jia X, Wang H, Li Z, Yan J, Guo Y, Zhao W, Gao L, Wang B, Jia Y. HER4 promotes the progression of colorectal cancer by promoting epithelial‑mesenchymal transition. Mol Med Rep 2020; 21:1779-1788. [PMID: 32319604 PMCID: PMC7057779 DOI: 10.3892/mmr.2020.10974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 01/06/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) remains one of the most common cancer types worldwide. A few previous studies have examined whether HER4 may promote the progression of CRC. The present study examined the associations among the expression levels of members of the HER family, and investigated the potential mechanism underlying the function of HER4 in CRC cells. Immunohistochemistry analysis was conducted to detect the expression levels of HER family members in patients with CRC. HER4 expression was knocked down using short hairpin RNA in HCT116 cells, and confirmed by quantitative PCR and western blotting. The proliferation and adhesion of CRC cells were analyzed by CCK-8 assays and adhesive assays, respectively. Flow cytometry was used to measure cell apoptosis. Western blotting and immunofluorescence staining in CRC cells were performed to identify proteins related to epithelial-mesenchymal transition. The proportion of patients with CRC presenting positive expression of the HER family members epidermal growth factor receptor (EGFR), HER2, HER3 and HER4 were 72.1, 45.2, 43.8 and 34.2%, respectively. No relationship was found between HER4 and EGFR, HER2 or HER3 expression. Higher expression of HER4 was positively associated with lymph node metastasis (P=0.039). In the present study, HER4 expression was found to be associated with an unfavorable clinical outcome in patients with CRC (Plogrank=0.020). Cell proliferation was inhibited, and apoptosis was increased following HER4 knockdown. Furthermore, HER4 knockdown increased the expression of E-cadherin and decreased the expressions of N-cadherin and vimentin (P<0.05). HER4 expression was found to be unrelated to other HER family members. In the present study, positive expression of HER4 promoted the progression of CRC through epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Xiaojing Jia
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Huien Wang
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Zhongxin Li
- Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jing Yan
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Yan Guo
- Fifth Department of Oncology, The First Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, P.R. China
| | - Wujie Zhao
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Lixia Gao
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Bin Wang
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Yitao Jia
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|