1
|
de Sousa Moreira A, Lopes B, Sousa AC, Coelho A, Sousa P, Araújo A, Delgado E, Alvites R, Maurício AC. Stem Cell-Based Therapies for Glaucoma Treatment: A Review Bridging the Gap in Veterinary Patients. Int J Mol Sci 2024; 26:232. [PMID: 39796087 PMCID: PMC11719664 DOI: 10.3390/ijms26010232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Retinal diseases are characterized by progressive damage to retinal cells, leading to irreversible vision loss. Among these, glaucoma stands out as a multifactorial neurodegenerative disease involving elevated intraocular pressure, retinal ganglion cell apoptosis, and optic nerve damage, ultimately resulting in blindness in both humans and dogs. Stem cell-based therapies have emerged as a promising therapeutic option for such conditions due to their regenerative and neuroprotective potential. These therapies, particularly those based on mesenchymal stem cells, offer the potential to repair and protect retinal tissues through the bioactive molecules (growth factors, cytokines, chemokines) secreted, their secretome. However, research in this field, especially on the use of umbilical cord mesenchymal stem cells' secretome, remains sparse. Most clinical trials focus on human glaucomatous patients, leaving a significant gap in veterinary patients' application, especially in dogs, with additional research being needed to determine its usefulness in canine glaucoma treatment. Future studies should aim to evaluate these therapies across both human and veterinary contexts, broadening treatment possibilities for glaucoma.
Collapse
Affiliation(s)
- Alícia de Sousa Moreira
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Ana Catarina Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - André Coelho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Ana Araújo
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Esmeralda Delgado
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
- Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra n° 1317, 4585-116 Paredes, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| |
Collapse
|
2
|
Kashani E, Nourigheimasi S, Valisno J, Smith I, Lucke-Wold B, Bazrafshan H, Ghaedi A, Eghbalnejad Mofrad AM, Khanzadeh S. Diagnostic significance of neutrophil-to-lymphocyte ratio in non-arteritic anterior ischemic optic neuropathy: a meta-analysis. Eur J Med Res 2024; 29:562. [PMID: 39593107 PMCID: PMC11600861 DOI: 10.1186/s40001-024-02155-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND We aimed to determine the association of neutrophil-to-lymphocyte ratio (NLR) with non-arteritic anterior ischemic optic neuropathy (NAION). METHODS We conducted a systematic review and meta-analysis according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed, Scopus and Web of Science were searched from the establishment of the database to May 5, 2022 to find the relevant studies. The quality of the included literature was evaluated with the Newcastle-Ottawa scale (NOS). The results are reflected in the form of standard mean difference (SMD) and 95% confidence interval (CI). RESULTS Finally, six articles were included in our study. Compared with healthy controls, patients' NLR levels were significantly higher (SMD = 0.47; CI 95% = 0.30-0.65, p<0.001). The included studies were not statistically heterogeneous (I2 = 0.0%, p = 0.60); thus, the analysis used the fixed-effect model. The pooled sensitivity of NLR was 0.69 (95% CI 0.60-0.67), and the pooled specificity was 0.59 (95% CI 0.50-0.67). The pooled positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio (DOR) of NLR were 1.71(95%CI 1.48-1.98), 0.50 (95%CI 0.41-0.62), and 3.38 (95%CI 2.57-4.44), respectively. CONCLUSIONS Our findings suggest NLR to be a potential marker of NAION, while also implicating a role for inflammation in underlying pathophysiology.
Collapse
Affiliation(s)
- Erfan Kashani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, University of Medical Sciences, Arak, Iran
| | | | - Jeff Valisno
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - Isaac Smith
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | | | - Hanieh Bazrafshan
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arshin Ghaedi
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
3
|
Pedersen C, Chen VT, Herbst P, Zhang R, Elfert A, Krishan A, Azar DT, Chang JH, Hu WY, Kremsmayer TP, Jalilian E, Djalilian AR, Guaiquil VH, Rosenblatt MI. Target specification and therapeutic potential of extracellular vesicles for regulating corneal angiogenesis, lymphangiogenesis, and nerve repair. Ocul Surf 2024; 34:459-476. [PMID: 39426677 PMCID: PMC11921040 DOI: 10.1016/j.jtos.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/16/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Extracellular vesicles, including exosomes, are small extracellular vesicles that range in size from 30 nm to 10 μm in diameter and have specific membrane markers. They are naturally secreted and are present in various bodily fluids, including blood, urine, and saliva, and through the variety of their internal cargo, they contribute to both normal physiological and pathological processes. These processes include immune modulation, neuronal synapse formation, cell differentiation, cancer metastasis, angiogenesis, lymphangiogenesis, progression of infectious disease, and neurodegenerative disorders like Alzheimer's and Parkinson's disease. In recent years, interest has grown in the use of exosomes as a potential drug delivery system for various diseases and injuries. Importantly, exosomes originating from a patient's own cells exhibit minimal immunogenicity and possess remarkable stability along with inherent and adjustable targeting capabilities. This review explores the roles of exosomes in angiogenesis, lymphangiogenesis, and nerve repair with a specific emphasis on these processes within the cornea. Furthermore, it examines exosomes derived from specific cell types, discusses the advantages of exosome-based therapies in modulating these processes, and presents some of the most established methods for exosome isolation. Exosome-based treatments are emerging as potential minimally invasive and non-immunogenic therapies that modulate corneal angiogenesis and lymphangiogenesis, as well as enhance and accelerate endogenous corneal nerve repair.
Collapse
Affiliation(s)
- Cameron Pedersen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Victoria T Chen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Paula Herbst
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Runze Zhang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Amr Elfert
- University of Illinois Cancer Center, Chicago, IL, USA
| | - Abhi Krishan
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.
| | - Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL, USA
| | - Tobias P Kremsmayer
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Victor H Guaiquil
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Parthasarathi P, Moss HE. Review of evidence for treatments of acute non arteritic anterior ischemic optic neuropathy. Eye (Lond) 2024; 38:2267-2278. [PMID: 38778140 PMCID: PMC11306228 DOI: 10.1038/s41433-024-03136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/08/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE To review treatment modalities that have been studied in acute non arteritic anterior ischemic optic neuropathy (NAION). METHODS We performed a comprehensive literature search of English language publications in the last 5 years, with human species and NAION. Articles were reviewed to identify those that described original research on treatment of acute NAION. Study type, setting, duration, interventions, and results were extracted and articles were reviewed for biases and limitations. RESULTS We identified 22 kinds of treatment varying by compound and modality. These include topical, intravitreal, and systemic drugs as well as surgical approaches. Evidence for efficacy ranges from expert opinion to randomized control trials. CONCLUSIONS Although several treatments are utilized in practice, none of these have high quality evidence of efficacy to improve visual outcomes. Continued collaborative research is necessary to complete high quality studies in order identify effective therapies for this rare and blinding disease.
Collapse
Affiliation(s)
- Pooja Parthasarathi
- Department of Ophthalmology, Stanford University, Palo Alto, CA, 94303, USA.
| | - Heather E Moss
- Department of Ophthalmology, Stanford University, Palo Alto, CA, 94303, USA
- Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, 94303, USA
| |
Collapse
|
5
|
Chaibakhsh S, Azimi F, Shoae-Hassani A, Niknam P, Ghamari A, Dehghan S, Nilforushan N. Evaluating the impact of mesenchymal stem cell therapy on visual acuity and retinal nerve fiber layer thickness in optic neuropathy patients: a comprehensive systematic review and meta-analysis. BMC Ophthalmol 2024; 24:316. [PMID: 39075477 PMCID: PMC11287858 DOI: 10.1186/s12886-024-03588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Stem cell therapy has emerged as a potential therapeutic avenue for optic neuropathy patients. To assess its safety and efficacy, we conducted a systematic review and meta-analysis, focusing on the latest evidence pertaining to the improvement of visual acuity (VA) through stem cell therapy. METHODS We analyzed Each database from its inception until June 2024. PubMed, Scopus, and Google Scholar were systematically searched to identify the included studies. Data were extracted regarding the year of publication, the name of the first author, sample size, VA (Log Mar), and Retinal Nerve Fiber Layer (RNFL) thickness. PRISMA protocol was used as a guide to perform this meta-analysis. STATA 16 was used for statistical analysis. RESULTS A total of 66 eyes were examined in seven papers. Based on the meta-analysis, the mean VA (Log MAR) of patients with optic neuropathy improved from 0.90 to 0.65 following stem cell therapy intervention (p-value = 0.001). The thickness of the RNFLs did not demonstrate a significant change (p-value was 0.174). CONCLUSION According to this systematic review and meta-analysis, stem cell therapy may improve the visual acuity of patients with optic neuropathy. Aside from the traditional therapy that can be provided to patients with optic neuropathy, stem cell therapy may also be beneficial.
Collapse
Affiliation(s)
- Samira Chaibakhsh
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Azimi
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Shoae-Hassani
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Stem Cells and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Parvin Niknam
- Department of Ophthalmology, Mayo clinic, Rochester, MN, USA
| | - Ali Ghamari
- Pediatric Cell and Gene Therapy Research Center, Cell & Tissue Research Institute, Tehran university of Medical Sciences, Gene, Tehran, Iran
| | - Samaneh Dehghan
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.
- Stem Cells and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Naveed Nilforushan
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Salvetat ML, Pellegrini F, Spadea L, Salati C, Zeppieri M. Non-Arteritic Anterior Ischemic Optic Neuropathy (NA-AION): A Comprehensive Overview. Vision (Basel) 2023; 7:72. [PMID: 37987292 PMCID: PMC10661278 DOI: 10.3390/vision7040072] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Non-arteritic anterior ischemic optic neuropathy (NA-AION) represents one of the most important causes of blindness or severely impaired vision in middle-aged and elderly people. Unilateral optic disc edema and abrupt, painless vision loss are its defining features. It is commonly assumed that NA-AION is caused by an ischemic infarction of the optic nerve head, and, although the exact pathogenesis is still unknown, several risk factors and comorbidities associated with its development have been found. NA-AION occurs generally in patients older than 50 years who have small optic discs and vasculopathy risk factors. Even though numerous treatment options have been proposed, no available effective medical or surgical therapy or prophylactic measure for NA-AION currently exists. The purpose of present-day therapeutic strategies is therefore to identify and possibly control any underlying modifiable risk factors, aiming to prevent the development of new NA-AION episodes in the affected and fellow eye. A thorough assessment of NAION, including its history, epidemiology, etiology, pathophysiology, risk factors, associated comorbidities, clinical findings, diagnostic tests, treatment choices, prognosis, and future research, is the goal of this work.
Collapse
Affiliation(s)
- Maria Letizia Salvetat
- Department of Ophthalmology, Azienda Sanitaria Friuli Occidentale, 33170 Pordenone, Italy; (M.L.S.)
| | - Francesco Pellegrini
- Department of Ophthalmology, Azienda Sanitaria Friuli Occidentale, 33170 Pordenone, Italy; (M.L.S.)
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “Sapienza” University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
7
|
Finocchio L, Zeppieri M, Gabai A, Spadea L, Salati C. Recent Advances of Adipose-Tissue-Derived Mesenchymal Stem Cell-Based Therapy for Retinal Diseases. J Clin Med 2023; 12:7015. [PMID: 38002628 PMCID: PMC10672618 DOI: 10.3390/jcm12227015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
With the rapid development of stem cell research in modern times, stem cell-based therapy has opened a new era of tissue regeneration, becoming one of the most promising strategies for currently untreatable retinal diseases. Among the various sources of stem cells, adipose tissue-derived mesenchymal stem cells (ADSCs) have emerged as a promising therapeutic modality due to their characteristics and multiple functions, which include immunoregulation, anti-apoptosis of neurons, cytokine and growth factor secretion, and antioxidative activities. Studies have shown that ADSCs can facilitate the replacement of dying cells, promote tissue remodeling and regeneration, and support the survival and growth of retinal cells. Recent studies in this field have provided numerous experiments using different preclinical models. The aim of our review is to provide an overview of the therapeutic strategies, modern-day clinical trials, experimental models, and potential clinical use of this fascinating class of cells in addressing retinal disorders and diseases.
Collapse
Affiliation(s)
- Lucia Finocchio
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| | - Andrea Gabai
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, La Sapienza University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| |
Collapse
|
8
|
Salvetat ML, Pellegrini F, Spadea L, Salati C, Zeppieri M. Non-Arteritic Anterior Ischemic Optic Neuropathy (NA-AION): A Comprehensive Overview. Vision (Basel) 2023; 7:72. [DOI: : 10.3390/vision7040072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023] Open
Abstract
Non-arteritic anterior ischemic optic neuropathy (NA-AION) represents one of the most important causes of blindness or severely impaired vision in middle-aged and elderly people. Unilateral optic disc edema and abrupt, painless vision loss are its defining features. It is commonly assumed that NA-AION is caused by an ischemic infarction of the optic nerve head, and, although the exact pathogenesis is still unknown, several risk factors and comorbidities associated with its development have been found. NA-AION occurs generally in patients older than 50 years who have small optic discs and vasculopathy risk factors. Even though numerous treatment options have been proposed, no available effective medical or surgical therapy or prophylactic measure for NA-AION currently exists. The purpose of present-day therapeutic strategies is therefore to identify and possibly control any underlying modifiable risk factors, aiming to prevent the development of new NA-AION episodes in the affected and fellow eye. A thorough assessment of NAION, including its history, epidemiology, etiology, pathophysiology, risk factors, associated comorbidities, clinical findings, diagnostic tests, treatment choices, prognosis, and future research, is the goal of this work.
Collapse
Affiliation(s)
- Maria Letizia Salvetat
- Department of Ophthalmology, Azienda Sanitaria Friuli Occidentale, 33170 Pordenone, Italy
| | - Francesco Pellegrini
- Department of Ophthalmology, Azienda Sanitaria Friuli Occidentale, 33170 Pordenone, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “Sapienza” University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
9
|
Pastor JC, Pastor-Idoate S, López-Paniagua M, Para M, Blazquez F, Murgui E, García V, Coco-Martín RM. Intravitreal allogeneic mesenchymal stem cells: a non-randomized phase II clinical trial for acute non-arteritic optic neuropathy. Stem Cell Res Ther 2023; 14:261. [PMID: 37735668 PMCID: PMC10512539 DOI: 10.1186/s13287-023-03500-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND An effective treatment for acute non-arteritic ischemic optic neuropathy (NA-AION) has not been known or proven yet. Previous studies have suggested a neuroprotective effect of allogeneic bone marrow-derived mesenchymal stem cells. This study aims to report the results of a clinical trial on patients with acute non-arteritic optic neuropathy (NA-AION) treated with an intravitreal injection of allogeneic bone marrow-derived mesenchymal stem cells (BM-MSCs) (MSV®). METHODS We conducted a prospective, non-randomized, clinical phase-II study (Eudra CT number 2016-003029-40; ClinicalTrials.gov Registry NCT03173638) that included 5 patients with acute unilateral NA-AION diagnosed within 2 weeks after symptom onset and who received an intravitreal injection of allogeneic BM-MSCs (0.05 ml; cell concentration: 1.5 × 106cells/mL). The patients underwent regular ophthalmological examinations and were followed for one year. RESULTS In this trial, allogeneic BM-MSCs appeared to be safe as no patients developed signs of acute nor chronic intraocular inflammation or a significant change in intraocular pressure, although an epiretinal membrane was developed in one patient. A retrolental aggregate formed shortly after the injection spontaneously disappeared within a few weeks in another phakic patient, leaving a subcapsular cataract. Visual improvement was noted in 4 patients, and amplitudes of P100 on the visually evoked potentials recordings increased in three patients. The retinal nerve fiber layer and macular ganglion cell layer thicknesses significantly decreased during the follow-up. CONCLUSIONS Besides the development of an epiretinal membrane in one patient, the intravitreal application of allogeneic BM-MSCs appeared to be intraocularly well tolerated. Consequently, not only NA-AION but also BM-MSCs deserve more clinical investigational resources and a larger randomized multicenter trial that would provide stronger evidence both about safety and the potential therapeutic efficacy of intravitreally injected allogeneic BM-MSCs in acute NA-AION. TRIAL REGISTRATION Safety Assessment of Intravitreal Mesenchymal Stem Cells for Acute Non-Arteritic Anterior Ischemic Optic Neuropathy (NEUROSTEM). NCT03173638. Registered June 02, 2017 https://clinicaltrials.gov/ct2/show/NCT03173638 .
Collapse
Affiliation(s)
- Jose C Pastor
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
- Hospital Clínico Universitario, Valladolid, Spain
| | - Salvador Pastor-Idoate
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain.
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain.
- Hospital Clínico Universitario, Valladolid, Spain.
| | - Marina López-Paniagua
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Para
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
| | - Francisco Blazquez
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Murgui
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
| | - Verónica García
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
- Citospin S.L., Valladolid, Spain
| | - Rosa M Coco-Martín
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
10
|
Srivastava GK, López-Paniagua M, Crespo Millas S. Advanced Therapy and Clinical Trials to Treat Patients with Optic Nerve Diseases. Neurotox Res 2022; 40:1739-1757. [PMID: 36370319 DOI: 10.1007/s12640-022-00593-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 08/30/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022]
Abstract
Optic nerve diseases include a wide variety of pathogenic conditions triggering injury or dysfunction of the optic nerves that lead to visual impairment or blindness in one or both eyes. Despite their pathogenic variety, most of them proceed through common mechanisms that allow them to investigate together. Nevertheless, roles of the cells, tissues, genes, growth factors, and proteins, and all underlying pathophysiological mechanisms need to be studied fully for better management of each optic nerve disease. This review presents a collection of information regarding ongoing and completed clinical trials (CT) of advanced therapies that deliver stem cell and gene therapy treatments as drugs to patients with optic nerve diseases as well as successes and failures achieved in treating these patients in the last few years. These drugs seem safe from creating neurotoxicity. It describes outcomes of a bibliographic search for stem cell therapy, gene therapy, and neuroprotection-based CT registered in the International ClinicalTrials.gov, the European EudraCT, and the Spanish REEC database, and related papers published in the PUBMED database by applying different search terminologies. This review overall informs the patients of optic neurodiseases that advanced therapies are progressing successfully in search of effective and safe treatments for them.
Collapse
Affiliation(s)
- Girish K Srivastava
- Instituto Universitario de Oftalmobiología Aplicada (IOBA) de la Universidad de Valladolid, Valladolid, Spain. .,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain.
| | - Marina López-Paniagua
- Instituto Universitario de Oftalmobiología Aplicada (IOBA) de la Universidad de Valladolid, Valladolid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
11
|
Chiquet C, Vignal C, Gohier P, Heron E, Thuret G, Rougier MB, Lehmann A, Flet L, Quesada JL, Roustit M, Milea D, Pepin JL. Treatment of nonarteritic anterior ischemic optic neuropathy with an endothelin antagonist: ENDOTHELION (ENDOTHELin antagonist receptor in Ischemic Optic Neuropathy)—a multicentre randomised controlled trial protocol. Trials 2022; 23:916. [DOI: 10.1186/s13063-022-06786-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Nonarteritic anterior ischemic optic neuropathy (NAAION) is a major cause of blindness in individuals over 50 years of age, with no available effective treatment. The oral dual endothelin receptor antagonist, bosentan, increases retinal optic nerve head blood flow in healthy humans and glaucoma patients. The objective of this trial is to assess the efficacy of bosentan administered at the acute stage in improving outcomes in NAAION patients.
Methods
ENDOTHELION (ENDOTHELin antagonist receptor in Ischemic Optic Neuropathy) is a phase III, interventional, prospective, multicentre, placebo-controlled randomised double-blind clinical trial. The primary outcome is change in the visual field mean deviation (MD) at 3 months (Humphrey 30-2 SITA standard programme). Secondary outcomes include MD and visual acuity changes up to 24 months, changes in peripapillary retinal nerve fibre and macular ganglion cell layer thickness in the affected eye, as measured by optical coherence tomography, rate of NAAION bilateralisation at 2 years, and quality-of-life. Patients over 50 years of age presenting with typical NAAION of recent onset (less than 21 days) are randomly assigned to either 125 mg oral bosentan or placebo, twice a day, during 8 weeks. Besides visits during the treatment phase, patients attend follow-up visits at 2, 3, 6, 12 and 24 months. The inclusion of patients began in August 2015 at five French University hospital ophthalmology departments and two specialised ophthalmology centres. It is planned to include 86 patients in this trial. To date we have included 72 patients and 49 have completed the full follow-up process.
Discussion
An endothelin receptor antagonist is a potential approach to improving the anatomical and functional prognosis of patients with NAAION. This multicentre double-blind randomised controlled trial is an opportunity to assess (1) the effect of bosentan on the structure and function of the optic nerve in NAAION, at 3 months, (2) the effect of bosentan on the bilateralisation rate at 24 months and (3) the tolerance profile of bosentan in this population.
Trial registration
ClinicalTrials.gov NCT02377271. Registered on March 3, 2015.
Collapse
|
12
|
Chen X, Jiang Y, Duan Y, Zhang X, Li X. Mesenchymal-Stem-Cell-Based Strategies for Retinal Diseases. Genes (Basel) 2022; 13:genes13101901. [PMID: 36292786 PMCID: PMC9602395 DOI: 10.3390/genes13101901] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 12/04/2022] Open
Abstract
Retinal diseases are major causes of irreversible vision loss and blindness. Despite extensive research into their pathophysiology and etiology, pharmacotherapy effectiveness and surgical outcomes remain poor. Based largely on numerous preclinical studies, administration of mesenchymal stem cells (MSCs) as a therapeutic strategy for retinal diseases holds great promise, and various approaches have been applied to the therapies. However, hindered by the retinal barriers, the initial vision for the stem cell replacement strategy fails to achieve the anticipated effect and has now been questioned. Accumulating evidence now suggests that the paracrine effect may play a dominant role in MSC-based treatment, and MSC-derived extracellular vesicles emerge as a novel compelling alternative for cell-free therapy. This review summarizes the therapeutic potential and current strategies of this fascinating class of cells in retinal degeneration and other retinal dysfunctions.
Collapse
|
13
|
Soares MBP, Gonçalves RGJ, Vasques JF, da Silva-Junior AJ, Gubert F, Santos GC, de Santana TA, Almeida Sampaio GL, Silva DN, Dominici M, Mendez-Otero R. Current Status of Mesenchymal Stem/Stromal Cells for Treatment of Neurological Diseases. Front Mol Neurosci 2022; 15:883378. [PMID: 35782379 PMCID: PMC9244712 DOI: 10.3389/fnmol.2022.883378] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Neurological disorders include a wide spectrum of clinical conditions affecting the central and peripheral nervous systems. For these conditions, which affect hundreds of millions of people worldwide, generally limited or no treatments are available, and cell-based therapies have been intensively investigated in preclinical and clinical studies. Among the available cell types, mesenchymal stem/stromal cells (MSCs) have been widely studied but as yet no cell-based treatment exists for neurological disease. We review current knowledge of the therapeutic potential of MSC-based therapies for neurological diseases, as well as possible mechanisms of action that may be explored to hasten the development of new and effective treatments. We also discuss the challenges for culture conditions, quality control, and the development of potency tests, aiming to generate more efficient cell therapy products for neurological disorders.
Collapse
Affiliation(s)
- Milena B. P. Soares
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Renata G. J. Gonçalves
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana F. Vasques
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Almir J. da Silva-Junior
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Nanotecnologia no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Gubert
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Girlaine Café Santos
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Thaís Alves de Santana
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Gabriela Louise Almeida Sampaio
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | | | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, University of Modena and Reggio Emilia (UNIMORE), Modena, Italy
| | - Rosalia Mendez-Otero
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Nanotecnologia no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Brown C, Agosta P, McKee C, Walker K, Mazzella M, Alamri A, Svinarich D, Chaudhry GR. Human primitive mesenchymal stem cell-derived retinal progenitor cells improved neuroprotection, neurogenesis, and vision in rd12 mouse model of retinitis pigmentosa. Stem Cell Res Ther 2022; 13:148. [PMID: 35395806 PMCID: PMC8994263 DOI: 10.1186/s13287-022-02828-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/20/2022] [Indexed: 01/05/2023] Open
Abstract
Background Currently, there is no treatment for retinal degenerative diseases (RDD) such as retinitis pigmentosa (RP). Stem cell-based therapies could provide promising opportunities to repair the damaged retina and restore vision. Thus far, primarily adult mesenchymal stem cells (MSCs) have been investigated in preclinical and clinical studies, and the results have not been convincing. We applied a new approach in which primitive (p) MSC-derived retinal progenitor cells (RPCs) were examined to treat retinal degeneration in an rd12 mouse model of RP. Methods Well-characterized pMSCs and RPCs labeled with PKH26 were intravitreally injected into rd12 mice. The vision and retinal function of transplanted animals were analyzed using electroretinography. Animals were killed 4 and 8 weeks after cell transplantation for histological, immunological, molecular, and transcriptomic analyses of the retina. Results Transplanted RPCs significantly improved vision and retinal thickness as well as function in rd12 mice. pMSCs and RPCs homed to distinct retinal layers. pMSCs homed to the retinal pigment epithelium, and RPCs migrated to the neural layers of the retina, where they improved the thickness of the respective layers and expressed cell-specific markers. RPCs induced anti-inflammatory and neuroprotective responses as well as upregulated the expression of genes involved in neurogenesis. The transcriptomic analysis showed that RPCs promoted neurogenesis and functional recovery of the retina through inhibition of BMP and activation of JAK/STAT and MAPK signaling pathways. Conclusions Our study demonstrated that RPCs countered inflammation, provided retinal protection, and promoted neurogenesis resulting in improved retinal structure and physiological function in rd12 mice. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02828-w.
Collapse
Affiliation(s)
- Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA
| | - Patrina Agosta
- Ascension Providence Hospital, Southfield, MI, 48075, USA
| | - Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA
| | - Keegan Walker
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA
| | - Matteo Mazzella
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA
| | - Ali Alamri
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA
| | | | - G Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA. .,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA.
| |
Collapse
|
15
|
Tan S, Yao Y, Yang Q, Yuan XL, Cen LP, Ng TK. Diversified Treatment Options of Adult Stem Cells for Optic Neuropathies. Cell Transplant 2022; 31. [PMID: 36165292 PMCID: PMC9523835 DOI: 10.1177/09636897221123512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/28/2022] [Accepted: 08/16/2022] [Indexed: 02/05/2023] Open
Abstract
Optic neuropathies refer to a group of ocular disorders with abnormalities or dysfunction of the optic nerve, sharing a common pathophysiology of retinal ganglion cell (RGC) death and axonal loss. RGCs, as the retinal neurons in the central nervous system, show limited capacity in regeneration or recovery upon diseases or after injuries. Critically, there is still no effective clinical treatment to cure most types of optic neuropathies. Recently, stem cell therapy was proposed as a potential treatment strategy for optic neuropathies. Adult stem cells, including mesenchymal stem cells and hematopoietic stem cells, have been applied in clinical trials based on their neuroprotective properties. In this article, the applications of adult stem cells on different types of optic neuropathies and the related mechanisms will be reviewed. Research updates on the strategies to enhance the neuroprotective effects of human adult stem cells will be summarized. This review article aims to enlighten the research scientists on the diversified functions of adult stem cells and consideration of adult stem cells as a potential treatment for optic neuropathies in future clinical practices.
Collapse
Affiliation(s)
- Shaoying Tan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yao Yao
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Qichen Yang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
| | - Xiang-Ling Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
- Shantou University Medical College, Shantou, China
| | - Ling-Ping Cen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, China
- Shantou University Medical College, Shantou, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
16
|
Modulation of Mesenchymal Stem Cells for Enhanced Therapeutic Utility in Ischemic Vascular Diseases. Int J Mol Sci 2021; 23:ijms23010249. [PMID: 35008675 PMCID: PMC8745455 DOI: 10.3390/ijms23010249] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells are multipotent stem cells isolated from various tissue sources, including but not limited to bone marrow, adipose, umbilical cord, and Wharton Jelly. Although cell-mediated mechanisms have been reported, the therapeutic effect of MSCs is now recognized to be primarily mediated via paracrine effects through the secretion of bioactive molecules, known as the “secretome”. The regenerative benefit of the secretome has been attributed to trophic factors and cytokines that play neuroprotective, anti-angiogenic/pro-angiogenic, anti-inflammatory, and immune-modulatory roles. The advancement of autologous MSCs therapy can be hindered when introduced back into a hostile/disease environment. Barriers include impaired endogenous MSCs function, limited post-transplantation cell viability, and altered immune-modulatory efficiency. Although secretome-based therapeutics have gained popularity, many translational hurdles, including the heterogeneity of MSCs, limited proliferation potential, and the complex nature of the secretome, have impeded the progress. This review will discuss the experimental and clinical impact of restoring the functional capabilities of MSCs prior to transplantation and the progress in secretome therapies involving extracellular vesicles. Modulation and utilization of MSCs–secretome are most likely to serve as an effective strategy for promoting their ultimate success as therapeutic modulators.
Collapse
|
17
|
Mundy DC, Goldberg JL. Nanoparticles as Cell Tracking Agents in Human Ocular Cell Transplantation Therapy. CURRENT OPHTHALMOLOGY REPORTS 2021. [DOI: 10.1007/s40135-021-00275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Nicoară SD, Brie I, Jurj A, Sorițău O. The Future of Stem Cells and Their Derivates in the Treatment of Glaucoma. A Critical Point of View. Int J Mol Sci 2021; 22:ijms222011077. [PMID: 34681739 PMCID: PMC8540760 DOI: 10.3390/ijms222011077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/24/2022] Open
Abstract
This review focuses on the clinical translation of preclinical studies, especially those that have used stem cells in the treatment of glaucoma, with an emphasis on optic nerve regeneration. The studies referred to in the review aim to treat optic nerve atrophy, while cell therapies targeting other sites in the eye, such as the trabecular meshwork, have not been addressed. Such complex and varied pathophysiological mechanisms that lead to glaucoma may explain the fact that although stem cells have a high capacity of neuronal regeneration, the treatments performed did not have the expected results and the promise offered by animal studies was not achieved. By analyzing the facts associated with failure, important lessons are to be learned: the type of stem cells that are used, the route of administration, the selection of patients eligible for these treatments, additional therapies that support stem cells transplantation and their mode of action, methods of avoiding the host’s immune response. Many of these problems could be solved using exosomes (EV), but also miRNA, which allows more targeted approaches with minimal side effects.
Collapse
Affiliation(s)
- Simona Delia Nicoară
- Department of Ophthalmology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania
- Clinic of Ophthalmology, Emergency County Hospital, 3–5 Clinicilor Street, 40006 Cluj-Napoca, Romania
- Correspondence: or ; Tel.: +40-264592771
| | - Ioana Brie
- “Ion Chiricuță” Institute of Oncology, Laboratory of Cell Biology and Radiobiology, 34–36 Republicii Street, 400010 Cluj-Napoca, Romania; (I.B.); (O.S.)
| | - Ancuța Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Olga Sorițău
- “Ion Chiricuță” Institute of Oncology, Laboratory of Cell Biology and Radiobiology, 34–36 Republicii Street, 400010 Cluj-Napoca, Romania; (I.B.); (O.S.)
| |
Collapse
|
19
|
Agarwal R, Tripathi A. Current Modalities for Low Vision Rehabilitation. Cureus 2021; 13:e16561. [PMID: 34466307 PMCID: PMC8396411 DOI: 10.7759/cureus.16561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Visual rehabilitation is an effective method for increasing the quality of life among individuals with low vision or blindness due to untreatable causes. Low vision rehabilitation aims for patients to use their residual vision effectively and efficiently to enable them to live independent and productive lives. Low vision rehabilitation includes assessment of residual visual functions, prescription of rehabilitation aids, and training in the use of devices. A multidisciplinary approach and coordinated effort are necessary to take advantage of new scientific advances and achieve optimal results for the patient. This article aims to review the various aids and methods available for low vision rehabilitation and also discusses technology advances that can enhance the visual functioning of individuals who are visually impaired.
Collapse
Affiliation(s)
- Richa Agarwal
- Ophthalmology, All India Institute of Medical Sciences, Gorakhpur, IND
| | - Alka Tripathi
- Ophthalmology, All India Institute of Medical Sciences, Gorakhpur, IND
| |
Collapse
|
20
|
Samoila O, Samoila L. Stem Cells in the Path of Light, from Corneal to Retinal Reconstruction. Biomedicines 2021; 9:biomedicines9080873. [PMID: 34440077 PMCID: PMC8389604 DOI: 10.3390/biomedicines9080873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
The future of eye reconstruction invariably includes stem cells transplantation. Corneal limbus, corneal stroma, trabeculum, retinal cells, optic nerve, and all structures that are irreversibly damaged and have no means to be repaired or replaced, through conventional treatment or surgery, represent targets for stem cell reconstruction. This review tries to answer the question if there is any clinical validation for stem therapies, so far, starting from the cornea and, on the path of light, arriving to the retina. The investigation covers the last 10 years of publications. From 2385 published sources, we found 56 clinical studies matching inclusion criteria, 39 involving cornea, and 17 involving retina. So far, corneal epithelial reconstruction seems well validated clinically. Enough clinical data are collected to allow some form of standardization for the stem cell transplant procedures. Cultivated limbal epithelial stem cells (CLET), simple limbal epithelial transplant (SLET), and oral mucosa transplantation are implemented worldwide. In comparison, far less patients are investigated in retinal stem reconstructions, with lower anatomical and clinical success, so far. Intravitreal, subretinal, and suprachoroidal approach for retinal stem therapies face specific challenges.
Collapse
Affiliation(s)
- Ovidiu Samoila
- Ophthalmology Department, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400006 Cluj-Napoca, Romania
- Correspondence:
| | | |
Collapse
|
21
|
Mesenchymal Stem Cell-Based Therapy for Retinal Degenerative Diseases: Experimental Models and Clinical Trials. Cells 2021; 10:cells10030588. [PMID: 33799995 PMCID: PMC8001847 DOI: 10.3390/cells10030588] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Retinal degenerative diseases, such as age-related macular degeneration, retinitis pigmentosa, diabetic retinopathy or glaucoma, represent the main causes of a decreased quality of vision or even blindness worldwide. However, despite considerable efforts, the treatment possibilities for these disorders remain very limited. A perspective is offered by cell therapy using mesenchymal stem cells (MSCs). These cells can be obtained from the bone marrow or adipose tissue of a particular patient, expanded in vitro and used as the autologous cells. MSCs possess potent immunoregulatory properties and can inhibit a harmful inflammatory reaction in the diseased retina. By the production of numerous growth and neurotrophic factors, they support the survival and growth of retinal cells. In addition, MSCs can protect retinal cells by antiapoptotic properties and could contribute to the regeneration of the diseased retina by their ability to differentiate into various cell types, including the cells of the retina. All of these properties indicate the potential of MSCs for the therapy of diseased retinas. This view is supported by the recent results of numerous experimental studies in different preclinical models. Here we provide an overview of the therapeutic properties of MSCs, and their use in experimental models of retinal diseases and in clinical trials.
Collapse
|
22
|
Kahraman NS, Öner A. Umbilical cord-derived mesenchymal stem cell implantation in patients with optic atrophy. Eur J Ophthalmol 2020; 31:3463-3470. [PMID: 33307808 DOI: 10.1177/1120672120977824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Optic nerve cells can be irreversibly damaged by common various causes. Unfortunately optic nerve and retinal ganglion cells have no regenerative capacity and undergo apoptosis in case of damage. In this study, our aim is to investigate the safety and efficacy of suprachoroidal umbilical cord-derived MSCs (UC-MSCs) implantation in patients with optic atrophy. METHODS This study enrolled 29 eyes of 23 patients with optic atrophy who were followed in the ophthalmology department of our hospital. BCVA, anterior segment, fundus examination, color photography, and optical coherence tomography (OCT) were carried out at each visit. Fundus fluorescein angiography and visual field examination were performed at the end of the first, third, sixth months, and 1 year follow-up. RESULTS After suprachoroidal UC-MSCs implantation there were statistically significant improvements in BCVA and VF results during 12 months follow-up (p < 0.05). When we evaluate the results of VF tests, the mean deviation (MD) value at baseline was -26.11 ± 8.36 (range -14.18 to -34.41). At the end of the first year it improved to -25.01 ± 8.73 (range -12.56 to -34.41) which was statistically significant (p < 0.05). When we evaluate the mean RNFL thickness measurements at baseline and at 12 month follow-up the results were 81.8 ± 24.9 μm and 76.6 ± 22.6 μm, respectively. There was not a significant difference between the mean values (p > 0.05). CONCLUSION Stem cell treatment with suprachoroidal implantation of UCMSCs seems to be safe and effective in the treatment for optic nerve diseases that currently have no curative treatment options.
Collapse
Affiliation(s)
| | - Ayşe Öner
- Department of Ophthalmology, Acibadem Hospital, Kayseri, Turkey
| |
Collapse
|
23
|
Kahraman NS, Oner A. Umbilical cord derived mesenchymal stem cell implantation in retinitis pigmentosa: a 6-month follow-up results of a phase 3 trial. Int J Ophthalmol 2020; 13:1423-1429. [PMID: 32953582 DOI: 10.18240/ijo.2020.09.14] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/15/2020] [Indexed: 12/20/2022] Open
Abstract
AIM To investigate the efficacy and the safety of umbilical cord derived mesenchymal stem cell (UC-MSC) implantation in patients with retinitis pigmentosa (RP). METHODS This prospective, single-center, phase 3 clinical study enrolled 124 eyes of 82 RP patients. The patients received 5 million UC-MSCs to the suprachoroidal area with a surgical procedure. Patients were evaluated on the 1st day, 1st, and 6th months postoperatively. Best corrected visual acuity (BCVA), anterior segment and fundus examinations, color photography, optical coherence tomography (OCT), and visual field (VF) tests were carried out at each visit. Fundus fluorescein angiography (FFA) and multifocal electroretinography (mfERG) recordings were performed at the end of the 6th month. Ocular and systemic adverse events of the surgical procedure were also noted. RESULTS All of the 82 patients completed the 6-month follow-up period. None of them had any serious systemic or ocular complications. There were statistically significant improvements in BCVA and VF during the study (all P<0.05). The amplitudes of the P1 waves in the central areas showed significant improvements in mfERG recordings. There were also significant increases in implicit times of P1 waves in the central areas. CONCLUSION Suprachoroidal administration of UC-MSCs has beneficial effect on BCVA, VF, and mfERG measurements during the 6-month follow-up period. Cell mediated therapy based on the secretion of growth factors (GFs) seems to be an effective and safe option for degenerative retinal diseases.
Collapse
Affiliation(s)
| | - Ayse Oner
- Department of Ophthalmology, Kayseri Acibadem Hospital, Kayseri 38030, Turkey
| |
Collapse
|
24
|
Zheng X, Wang Y, Chen G, Ma C, Yan W, Chen M. Diagnosis of ischemic optic neuropathy caused by dissection of the internal carotid artery: A case report. Medicine (Baltimore) 2020; 99:e20034. [PMID: 32871969 PMCID: PMC7437740 DOI: 10.1097/md.0000000000020034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Ischemic optic neuropathy (ION), due to diseases of the arteries supplying the optic nerve, is an ischemic damage of the optic nerve. This report highlights a case with monocular decreasing visual acuity caused by dissection of the internal carotid artery (ICA), which is a relatively rare cause for ION. PATIENT CONCERNS A 44-year-old woman presented with a decreasing visual acuity and defected visual field in the right eye for 1 week. The best corrected visual acuity (BCVA) was 20/400 in the right eye, and 20/20 in the left eye. In the right eye, the pupil showed little reaction to light with a relative afferent pupillary defect. The visual field test disclosed a defect in the inferior field connecting to the blind spot. Electroretinogram recording showed no obviously declined retinal function. No recognizable waveforms were presented in pattern visual-evoked potential (PVEP) examination, whereas the flash visual-evoked potential result revealed a delayed peak time and a reduced amplitude of P2-wave. DIAGNOSIS The patient was diagnosed as ION with the aid of computed tomographic angiography of the brain and neck, which revealed a stenosis in the right ICA and an occlusion in the right cerebral middle artery. The stenosis was verified as dissection of the ICA by digital subtraction angiography. INTERVENTIONS Based on the clinical findings, stent implantation inside the right ICA was performed. OUTCOMES The ICA was recanalized soon and the BCVA of the right eye was improved to be 20/25 five months later. A second PVEP examination revealed a recognizable waveform in the right eye, although the peak time and amplitude of the P100-wave was a bit abnormal compared to that of the left eye. LESSONS ION with the sign of decreasing monocular visual acuity could occur due to dissection of the ICA, with no obvious neurologic symptom at the beginning. The present case emphasizes the importance of suspicion of ICA problems as the underlying cause for ION, which could help to take in-time measure to save the vision and avoid further complications.
Collapse
MESH Headings
- Adult
- Carotid Artery, Internal, Dissection/complications
- Carotid Artery, Internal, Dissection/diagnosis
- Carotid Artery, Internal, Dissection/therapy
- Diagnosis, Differential
- Female
- Humans
- Optic Neuropathy, Ischemic/diagnosis
- Optic Neuropathy, Ischemic/etiology
- Optic Neuropathy, Ischemic/therapy
Collapse
|
25
|
Platt A, David BT, Fessler RG. Stem Cell Clinical Trials in Spinal Cord Injury: A Brief Review of Studies in the United States. MEDICINES 2020; 7:medicines7050027. [PMID: 32408562 PMCID: PMC7281746 DOI: 10.3390/medicines7050027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022]
Abstract
Background: Although many therapeutic approaches have been attempted to treat spinal cord injury, cellular transplantation offers the greatest promise in reconstituting the architecture of the damaged cord. Methods: A literature review was conducted to search for clinical trials investigating stem cells as treatment for spinal cord injury in the United States. Results: Overall, eight studies met inclusion criteria. Of the included studies, four were identified as being terminated, suspended, or not yet recruiting. Two studies were identified as currently recruiting, including one phase one trial evaluating stereotactic injections of human spinal cord-derived neural stem cells in patients with chronic spinal cord injuries, and one trial of transplantation of autologous bone marrow derived stem cells via paraspinal injections, intravenous injections, and intranasal placement. One study was identified as an active study, a phase one trial of intrathecal injection of 100 million autologous, ex-vivo expanded, adipose-derived mesenchymal stem cells. One trial that was listed as completed is a phase 1/2a, dose escalation study, investigating stereotactic injection of human embryonic stem cell derived oligodendrocyte progenitor cells. Conclusions: Although few significant publications have emerged to this point, current trial results are promising.
Collapse
Affiliation(s)
- Andrew Platt
- Department of Surgery, Section of Neurosurgery, University of Chicago, Chicago, IL 60612, USA;
| | - Brian T. David
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Richard G. Fessler
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL 60612, USA;
- Correspondence: ; Tel.: +312-942-6644
| |
Collapse
|
26
|
Stem Cell Ophthalmology Treatment Study (SCOTS): Bone Marrow-Derived Stem Cells in the Treatment of Age-Related Macular Degeneration. MEDICINES 2020; 7:medicines7040016. [PMID: 32231088 PMCID: PMC7235782 DOI: 10.3390/medicines7040016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023]
Abstract
Background: Dry age-related macular degeneration (AMD) is one of the leading causes of vision loss in older patients. The macula accumulates drusen with loss of retinal pigment epithelial cells and photoreceptors. Abnormal subretinal neovascularization is absent. There is no effective drug therapy for dry AMD and a large proportion of patients progress to legal blindness from macular atrophy. The Stem Cell Ophthalmology Treatment Study (SCOTS) was conducted to assess the effect of bone marrow-derived stem cells (BMSCs) on dry AMD and other retinal and optic nerve diseases. Methods: Thirty-two eyes were treated with BMSC per the protocols in SCOTS. Provision of BMSCs in Arm 1 was via retrobulbar (RB), sub-tenons (ST) and intravenous (IV); Arm 2 via intravitreal, RB, ST and IV; Arm 3 via subretinal and IV. Patient age averaged 78 years old and ranged from 69 to 90. Visual acuity preoperatively ranged from counting fingers to 20/50-2 with an average preoperative LogMAR of 1.125. Results: Following treatment, 20 of 32 (63%) of eyes experienced improvement in visual acuity averaging 27.6% on LogMAR and ranging from 2.5% to 44.6%. The mean improvement in LogMAR was 0.963 with a standard deviation (SD) of 0.42. The visual acuity remained stable in 34% of treated eyes. One eye continued to worsen as a consequence of disease progression. The results showed high statistical significance with p ≤ 0.001. The procedures were conducted safely, and no complications were observed. Conclusion: Treatment of dry AMD with BMSC using the protocols developed in the SCOTS clinical trial has shown statistically significant clinical benefit improving visual acuity and potentially delaying visual loss in the disease.
Collapse
|
27
|
Singh MS, Park SS, Albini TA, Canto-Soler MV, Klassen H, MacLaren RE, Takahashi M, Nagiel A, Schwartz SD, Bharti K. Retinal stem cell transplantation: Balancing safety and potential. Prog Retin Eye Res 2020; 75:100779. [PMID: 31494256 PMCID: PMC7056514 DOI: 10.1016/j.preteyeres.2019.100779] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022]
Abstract
Stem cell transplantation holds great promise as a potential treatment for currently incurable retinal degenerative diseases that cause poor vision and blindness. Recently, safety data have emerged from several Phase I/II clinical trials of retinal stem cell transplantation. These clinical trials, usually run in partnership with academic institutions, are based on sound preclinical studies and are focused on patient safety. However, reports of serious adverse events arising from cell therapy in other poorly regulated centers have now emerged in the lay and scientific press. While progress in stem cell research for blindness has been greeted with great enthusiasm by patients, scientists, doctors and industry alike, these adverse events have raised concerns about the safety of retinal stem cell transplantation and whether patients are truly protected from undue harm. The aim of this review is to summarize and appraise the safety of human retinal stem cell transplantation in the context of its potential to be developed into an effective treatment for retinal degenerative diseases.
Collapse
Affiliation(s)
- Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Susanna S Park
- Department of Ophthalmology & Vision Science, University of California-Davis Eye Center, Sacramento, CA, 95817, USA
| | - Thomas A Albini
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - M Valeria Canto-Soler
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Henry Klassen
- Gavin Herbert Eye Institute and Stem Cell Research Center, Irvine, CA, 92697, USA
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford and Oxford University Eye Hospital, NHS Foundation Trust, NIHR Biomedical Research Centre, Oxford, OX3 9DU, UK
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, Center for Biosystems Dynamics Research, RIKEN, Kobe, Hyogo, 650-0047, Japan
| | - Aaron Nagiel
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA; USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90007, USA
| | - Steven D Schwartz
- Stein Eye Institute, University of California Los Angeles Geffen School of Medicine, Los Angeles, CA, 90095, USA; Edythe and Eli Broad Stem Cell Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Kapil Bharti
- National Eye Institute, National Institutes of Health, Bethesda, MD, 90892, USA
| |
Collapse
|
28
|
Puertas-Neyra K, Usategui-Martín R, Coco RM, Fernandez-Bueno I. Intravitreal stem cell paracrine properties as a potential neuroprotective therapy for retinal photoreceptor neurodegenerative diseases. Neural Regen Res 2020; 15:1631-1638. [PMID: 32209762 PMCID: PMC7437593 DOI: 10.4103/1673-5374.276324] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Retinal degenerations are the leading causes of irreversible visual loss worldwide. Many pathologies included under this umbrella involve progressive degeneration and ultimate loss of the photoreceptor cells, with age-related macular degeneration and inherited and ischemic retinal diseases the most relevant. These diseases greatly impact patients’ daily lives, with accompanying marked social and economic consequences. However, the currently available treatments only delay the onset or slow progression of visual impairment, and there are no cures for these photoreceptor diseases. Therefore, new therapeutic strategies are being investigated, such as gene therapy, optogenetics, cell replacement, or cell-based neuroprotection. Specifically, stem cells can secrete neurotrophic, immunomodulatory, and anti-angiogenic factors that potentially protect and preserve retinal cells from neurodegeneration. Further, neuroprotection can be used in different types of retinal degenerative diseases and at different disease stages, unlike other potential therapies. This review summarizes stem cell-based paracrine neuroprotective strategies for photoreceptor degeneration, which are under study in clinical trials, and the latest preclinical studies. Effective retinal neuroprotection could be the next frontier in photoreceptor diseases, and the development of novel neuroprotective strategies will address the unmet therapeutic needs.
Collapse
Affiliation(s)
- Kevin Puertas-Neyra
- Instituto Universitario de Oftalmobiología Aplicada, Universidad de Valladolid, Valladolid, Spain
| | - Ricardo Usategui-Martín
- Instituto Universitario de Oftalmobiología Aplicada, Universidad de Valladolid, Valladolid, Spain
| | - Rosa M Coco
- Instituto Universitario de Oftalmobiología Aplicada, Universidad de Valladolid; Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León; Red Temática de Investigación Cooperativa en Salud, Oftared, Instituto de Salud Carlos III, Valladolid, Spain
| | - Ivan Fernandez-Bueno
- Instituto Universitario de Oftalmobiología Aplicada, Universidad de Valladolid; Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León; Red Temática de Investigación Cooperativa en Salud, Oftared, Instituto de Salud Carlos III, Valladolid, Spain
| |
Collapse
|
29
|
Six-month results of suprachoroidal adipose tissue-derived mesenchymal stem cell implantation in patients with optic atrophy: a phase 1/2 study. Int Ophthalmol 2019; 39:2913-2922. [PMID: 31309439 DOI: 10.1007/s10792-019-01141-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 07/06/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE This prospective clinical case series aimed to investigate the safety and efficacy of suprachoroidal adipose tissue-derived mesenchymal stem cell (ADMSC) implantation in patients with optic nerve diseases. METHODS This prospective, single-center, phase 1/2 study enrolled 4 eyes of 4 patients with optic atrophy of various reasons who underwent suprachoroidal implantation of ADMSCs. The best-corrected visual acuity (BCVA) in the study was HM at 1 m. The worse eye of the patient was operated. Patients were evaluated on the first day, first week, first month, third and sixth months postoperatively. BCVA, anterior segment and fundus examination, color photography, optical coherence tomography (OCT) and visual field examination were carried out at each visit. Fundus fluorescein angiography and multifocal electroretinography (mfERG) recordings were performed at the end of the first, third and sixth months and anytime if necessary during the follow-up. RESULTS All 4 patients completed the six-month follow-up. None of them had any systemic or ocular complications. All of the patients experienced visual acuity improvement, visual field improvement and improvement in the mfERG recordings. We found choroidal thickening in OCT of the 4 patients. CONCLUSION Even though the sample size is small, the improvements were still encouraging. Stem cell treatment with suprachoroidal implantation of ADMSCs seems to be safe and effective in the treatment for optic nerve diseases that currently have no curative treatment options.
Collapse
|
30
|
Weiss JN, Levy S. Dynamic light scattering spectroscopy of the retina-a non-invasive quantitative technique to objectively document visual improvement following ocular stem cell treatment. Stem Cell Investig 2019; 6:8. [PMID: 31119146 DOI: 10.21037/sci.2019.03.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/02/2019] [Indexed: 11/06/2022]
Abstract
Background A major difficulty in retinal research is the lack of a sensitive and quantitative method to objectively determine the functional ability of the retina. Dynamic light scattering (DLS) spectroscopy is a non-invasive quantitative technique that measures the thermal random motion of particles. DLS technology has been used to predict cataractogenesis in rabbits and detect and monitor diabetes mellitus in humans. The results demonstrated the utility of DLS to noninvasively quantitate subtle changes at the molecular level. Methods The Stem Cell Ophthalmology Treatment Study is an Institutional Review Board (IRB) approved clinical study and the largest ophthalmology stem cell study to date. A DLS system has been developed to perform retinal measurements. Using this device, sequential measurements were made in a patient with nonarteritic ischemic optic neuropathy (NAION) who underwent stem cell treatment in the Stem Cell Ophthalmology Treatment Study. Results The patient demonstrated visual acuity and visual field improvements in the absence of observed changes in his fundus or in ocular coherence tomography examinations. Measurements with the DLS device showed significant increases in the diffusion coefficient. The DLS results identified changes that anticipated the improvements in central and peripheral vision for the patient. Conclusions DLS has been demonstrated to have value in the early detection of molecular responses to interventions involving the retina and appears predictive of improvement in vision following stem cell treatment, irrespective of other imaging studies.
Collapse
Affiliation(s)
| | - Steven Levy
- MD Stem Cells, Westport, Connecticut 06880, USA
| |
Collapse
|
31
|
Mead B, Ahmed Z, Tomarev S. Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Promote Neuroprotection in a Genetic DBA/2J Mouse Model of Glaucoma. Invest Ophthalmol Vis Sci 2019; 59:5473-5480. [PMID: 30452601 PMCID: PMC6735616 DOI: 10.1167/iovs.18-25310] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose To determine if bone marrow-derived stem cell (BMSC) small extracellular vesicles (sEV) promote retinal ganglion cell (RGC) neuroprotection in the genetic DBA/2J mouse model of glaucoma for 12 months. Methods BMSC sEV and control fibroblast-derived sEV were intravitreally injected into 3-month-old DBA/2J mice once a month for 9 months. IOP and positive scotopic threshold responses were measured from 3 months: IOP was measured monthly and positive scotopic threshold responses were measured every 3 months. RGC neuroprotection was determined in wholemounts stained with RNA binding protein with multiple splicing (RBPMS), whereas axonal damage was assessed using paraphenylenediamine staining. Results As expected, DBA/2J mice developed chronic ocular hypertension beginning at 6 months. The delivery of BMSC sEV, but not fibroblast sEV, provided significant neuroprotective effects for RBPMS+ RGC while significantly reducing the number of degenerating axons seen in the optic nerve. BMSC sEV significantly preserved RGC function in 6-month-old mice, but provided no benefit at 9 and 12 months. Conclusions BMSC sEV are an effective neuroprotective treatment in a chronic model of ocular hypertension for 1 year, preserving RGC numbers and protecting against axonal degeneration.
Collapse
Affiliation(s)
- Ben Mead
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States.,Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Stanislav Tomarev
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
32
|
Nirwan RS, Albini TA, Sridhar J, Flynn HW, Kuriyan AE. Assessing "Cell Therapy" Clinics Offering Treatments of Ocular Conditions using Direct-to-Consumer Marketing Websites in the United States. Ophthalmology 2019; 126:1350-1355. [PMID: 30904542 DOI: 10.1016/j.ophtha.2019.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 12/14/2022] Open
Abstract
PURPOSE "Cell therapy" is becoming increasingly available to the public via online direct-to-consumer advertisement within the United States (U.S.). The current study investigates the scope of "cell therapy" clinics across the U.S. that advertise and offer "cell therapy" for ocular conditions based on information provided on their websites. DESIGN Cross-sectional study. PARTICIPANTS The study included companies that are U.S.-based, participate in direct-to-consumer online marketing, have websites that can be data-mined with content analysis, and advertise therapy for ocular conditions. METHODS Using a systematic, extensive keyword-based Internet search, content analysis of company websites was utilized to identify, document, and analyze U.S. businesses marketing "cell therapy" for ocular conditions as of September 16, 2017. MAIN OUTCOME MEASURES Clinic locations, source of stem cells used, route of administration, marketed ocular conditions, and cost of treatment. RESULTS Forty companies with 76 clinics use "cell therapy" to treat ocular conditions. California (23), Florida (12), and Illinois (10) contain the most clinics. All 40 companies specified sources of cells, which included autologous adipose-derived stem cells (35; 67%), autologous bone marrow-derived stem cells (8; 15%), amniotic stem cells (2; 4%), peripheral blood-derived stem cells (2; 4%), umbilical cord blood stem cells (2; 4%), allogenic bone marrow-derived stem cells (1; 2%), placental stem cells (1; 2%), and xenocells (1; 2%). The most commonly marketed ocular conditions included macular degeneration (35), optic neuritis (18), retinitis pigmentosa (17), and diabetic retinopathy (16). The most common routes of administration were intravenous (22) and "unspecified" (12); however, other companies listed more ocular-specific routes such as intravitreal injections (2), retrobulbar injections (2), eye injections (2), retrofundal injection (1), sub-Tenon injection (1), intraocular injection with vitrectomy (1), and eye drops (1). The cost of advertised "cell therapy" ranged from $4000 to $10 500. CONCLUSIONS "Cell therapy" for ocular conditions is readily available via direct-to-consumer marketing strategies across the United States. The "cells" are harvested from numerous sources and administered through different methods for multiple ocular conditions at these "cell therapy" clinics. Limited data for these treatments necessitates advocating caution to physicians and patients about treatments offered at commercial "cell therapy" clinics.
Collapse
Affiliation(s)
| | - Thomas A Albini
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida
| | - Jayanth Sridhar
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida
| | - Harry W Flynn
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida
| | - Ajay E Kuriyan
- Flaum Eye Institute, University of Rochester, Rochester, New York.
| |
Collapse
|
33
|
Weiss JN, Levy S. Stem Cell Ophthalmology Treatment Study: bone marrow derived stem cells in the treatment of Retinitis Pigmentosa. Stem Cell Investig 2018; 5:18. [PMID: 30050918 PMCID: PMC6043757 DOI: 10.21037/sci.2018.04.02] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/20/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND Seventeen patients with bilateral visual loss due to Retinitis Pigmentosa (RP) underwent autologous bone marrow derived stem cell (BMSC) treatment within the Stem Cell Ophthalmology Treatment Study (SCOTS and SCOTS 2). Both are National Institutes of Health (NIH) and Office of Human Research Protection (OHRP) compliant Institutional Review Board (IRB) approved clinical studies utilizing using autologous BMSC in the treatment of retinal and optic nerve diseases that meet inclusion criteria. METHODS The average age of the patients treated was 48.8 years. The average duration of disease prior to treatment was 27.6 years and ranged from 4 to approximately 60 years. Affected eyes were treated with either retrobulbar, subtenons and intravenous BMSC or retrobulbar, subtenons, intravitreal and intravenous. Follow up was provided a minimum of 6 months. The primary outcome was visual acuity as measured by Snellen or converted to LogMAR. RESULTS Following therapy in SCOTS or SCOTS 2, 11 patients (64.7%) showed improved binocular vision averaging 10.23 lines of Snellen acuity per eye over pre-treatment acuity; 8 patients (35.3%) remaining stable over the follow up period; no patients experiencing loss of overall acuity. In 33 treated eyes, 15 eyes (45.5%) improved an average of 7.9 lines of Snellen acuity, 15 eyes (45.5%) remained stable, and 3 eyes (9%) worsened by an average of 1.7 lines of Snellen acuity. Improvements ranged from 1 to 27 lines of vision. Using the LogMAR Scale and calculating delta as a ratio to pre-treatment vision in improved eyes, acuity improvement ranged from 23% to 90% with an average of 40.9% visual acuity improvement over baseline vision. Evaluation of all patients and eyes capable of LogMAR vision showed an average of 31% improvement in vision over baseline. Findings were of statistical significance (P=0.016). There were no surgical complications. CONCLUSIONS The BMSC protocols of the SCOTS achieved meaningful visual acuity improvements or stability in RP that were of statistical significance. Duration of disease did not appear to affect the ability of eyes to respond. Safety was confirmed. Possible mechanisms by which improvement occurred may include transdifferentiation of BMSC into Neuronal Nuclei (NeuN) positive cells, BMSC paracrine secretions or neurotrophic factors and hormones, transfer of mitochondria, release of messenger RNA or other compounds via exosomes or microvesicles. Given the successful outcome in this otherwise progressive condition, consideration should be given to providing this treatment option.
Collapse
|