1
|
Rosar F, Hügle MJ, Ries M, Bartholomä M, Maus S, Fries P, Khreish F, Ezziddin S. Benefit of including CT urography in [68Ga]PSMA-11 PET/CT with low-dose CT: first results from a larger prostate cancer cohort analysis. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2022; 66:280-289. [PMID: 31992688 DOI: 10.23736/s1824-4785.20.03224-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND Accuracy of [68Ga]PSMA-11 PET/CT may be hampered by ureter accumulation, mimicking lymph node metastases depending on localization and configuration. The benefit of CT urography for differentiation of lymph node metastasis from urinary tract activity was evaluated in a "PET/CT with low-dose CT" setting. METHODS Retrospective analysis of PET/CT for primary staging, biochemical recurrence or local treatment planning in patients with prostate cancer. For CT urography (CTU), iodinated contrast agent was administered 10 minutes prior to image acquisition. All potential pathologic (peri)ureteral tracer uptake was assigned to excretory ureteral accumulation or pathological lesion. To assess additional provided benefit of CTU all foci were rated with an introduced scoring system (ranging from 0 pts: CTU not needed; up to 3 pts: no differentiation possible without CTU). Success of ureter contrasting was assessed by measurement of Hounsfield units. Besides benefit for reading urography-enhanced PET/CT, the possible impact on subsequent patient treatment was evaluated. RESULTS A number of N.=247 patients were included in this study. By CT urography, it was possible to identify each ureter on low-dose CT, with its major part contrasted. In 120/247 (48.6%) patients, urography increased the diagnostic confidence while providing substantial support for interpretation in 60 (24.3%) cases. In 42 (17.0%) patients, urography was clinically relevant (up-/downstaging) with potential impact on subsequent patient care. In 30 of these 42 cases (12.1% of all), discrepant treatment would have resulted from a misdiagnosed tracer accumulation without urography. CONCLUSIONS CT urography benefits the interpretation of [68Ga]-PSMA-11 PET/CT with low-dose CT and leads to discrepant patient treatment in a small but significant subset of patients (12% in our cohort). The implementation of CT urography into standard protocols of [68Ga]PSMA-11 PET/CT with low-dose CT is recommended.
Collapse
Affiliation(s)
- Florian Rosar
- Department of Nuclear Medicine, Saarland University Medical Center, Homburg, Germany -
| | - Martin J Hügle
- Department of Nuclear Medicine, Saarland University Medical Center, Homburg, Germany
| | - Martin Ries
- Department of Nuclear Medicine, Saarland University Medical Center, Homburg, Germany
| | - Mark Bartholomä
- Department of Nuclear Medicine, Saarland University Medical Center, Homburg, Germany
| | - Stephan Maus
- Department of Nuclear Medicine, Saarland University Medical Center, Homburg, Germany
| | - Peter Fries
- Clinic of Diagnostic and Interventional Radiology, Saarland University Medical Center, Homburg, Germany
| | - Fadi Khreish
- Department of Nuclear Medicine, Saarland University Medical Center, Homburg, Germany
| | - Samer Ezziddin
- Department of Nuclear Medicine, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
2
|
Diagnostic Performance of Preoperative Choline-PET/CT in Patients Undergoing Salvage Lymph Node Dissection for Recurrent Prostate Cancer: A Multicenter Experience. Tomography 2022; 8:1090-1096. [PMID: 35448723 PMCID: PMC9031841 DOI: 10.3390/tomography8020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022] Open
Abstract
We aimed to retrospectively analyze consecutive prostate cancer patients diagnosed with biochemical or clinical recurrence after local treatment with curative intent, with no evidence of distant metastases, who underwent positron emission tomography/computed tomography (PET/CT) with choline followed by salvage lymph node dissection (SLND) in three academic centers between 2013 and 2020. A total of 27 men were included in the analyses. Sensitivity, specificity, positive and negative predictive values, and accuracy of choline-PET/CT in predicting pathology-proven lymph node involvement were 75%, 43%, 79%, 38% and 67% on per-patient and 70%, 86%, 80%, 78%, and 79% on per-site analyses, respectively, with the differences in specificity and NPV between per-patient and per-site analyses being statistically significant (p = 0.03 and 0.04, respectively). The study provides further insight into the role of preoperative choline-PET/CT in patients undergoing SLND for recurrent PC.
Collapse
|
3
|
Yang DM, Alfano R, Bauman G, Thiessen JD, Chin J, Pautler S, Moussa M, Gomez JA, Rachinsky I, Gaed M, Chung KJ, Ward A, Lee TY. Short-duration dynamic [ 18F]DCFPyL PET and CT perfusion imaging to localize dominant intraprostatic lesions in prostate cancer: validation against digital histopathology and comparison to [ 18F]DCFPyL PET/MR at 120 minutes. EJNMMI Res 2021; 11:107. [PMID: 34652551 PMCID: PMC8519985 DOI: 10.1186/s13550-021-00844-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/27/2021] [Indexed: 11/10/2022] Open
Abstract
Purpose Localized prostate cancer (PCa) in patients is characterized by a dominant focus in the gland (dominant intraprostatic lesion, DIL). Accurate DIL identification may enable more accurate diagnosis and therapy through more precise targeting of biopsy, radiotherapy and focal ablative therapies. The goal of this study is to validate the performance of [18F]DCFPyL PET and CT perfusion (CTP) for detecting and localizing DIL against digital histopathological images. Methods Multi-modality image sets: in vivo T2-weighted (T2w)-MRI, 22-min dynamic [18F]DCFPyL PET/CT, CTP, and 2-h post-injection PET/MR were acquired in patients prior to radical prostatectomy. The explanted gland with implanted fiducial markers was imaged with T2w-MRI. All images were co-registered to the pathologist-annotated digital images of whole-mount mid-gland histology sections using fiducial markers and anatomical landmarks. Regions of interest encompassing DIL and non-DIL tissue were drawn on the digital histopathological images and superimposed on PET and CTP parametric maps. Logistic regression with backward elimination of parameters was used to select the most sensitive parameter set to distinguish DIL from non-DIL voxels. Leave-one-patient-out cross-validation was performed to determine diagnostic performance. Results [18F]DCFPyL PET and CTP parametric maps of 15 patients were analyzed. SUVLate and a model combining Ki and k4 of [18F]DCFPyL achieved the most accurate performance distinguishing DIL from non-DIL voxels. Both detection models achieved an AUC of 0.90 and an error rate of < 10%. Compared to digital histopathology, the detected DILs had a mean dice similarity coefficient of 0.8 for the Ki and k4 model and 0.7 for SUVLate. Conclusions We have validated using co-registered digital histopathological images that parameters from kinetic analysis of 22-min dynamic [18F]DCFPyL PET can accurately localize DILs in PCa for targeting of biopsy, radiotherapy, and focal ablative therapies. Short-duration dynamic [18F]DCFPyL PET was not inferior to SUVLate in this diagnostic task. Clinical trial registration number: NCT04009174 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Dae-Myoung Yang
- Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada.,Robarts Research Institute, The University of Western Ontario, London, ON, Canada.,Imaging Program, Lawson Health Research Institute, 750 Base Line Road E, London, ON, N6C 2R5, Canada.,Department of Radiation Oncology, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA, 19111, USA
| | - Ryan Alfano
- Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada.,London Health Sciences Centre, London, ON, Canada.,Baines Imaging Research Laboratory, London, ON, Canada
| | - Glenn Bauman
- London Health Sciences Centre, London, ON, Canada.,Department of Oncology, The University of Western Ontario, London, ON, Canada
| | - Jonathan D Thiessen
- Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada.,Imaging Program, Lawson Health Research Institute, 750 Base Line Road E, London, ON, N6C 2R5, Canada.,Department of Medical Imaging, The University of Western Ontario, London, ON, Canada
| | - Joseph Chin
- London Health Sciences Centre, London, ON, Canada.,Department of Oncology, The University of Western Ontario, London, ON, Canada.,Department of Surgery, The University of Western Ontario, London, ON, Canada
| | - Stephen Pautler
- Department of Oncology, The University of Western Ontario, London, ON, Canada.,Department of Surgery, The University of Western Ontario, London, ON, Canada.,St. Joseph' Health Care, London, ON, Canada
| | - Madeleine Moussa
- London Health Sciences Centre, London, ON, Canada.,Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, ON, Canada
| | - Jose A Gomez
- London Health Sciences Centre, London, ON, Canada.,Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, ON, Canada
| | - Irina Rachinsky
- London Health Sciences Centre, London, ON, Canada.,Department of Medical Imaging, The University of Western Ontario, London, ON, Canada
| | - Mena Gaed
- Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, ON, Canada
| | - Kevin J Chung
- Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada.,Robarts Research Institute, The University of Western Ontario, London, ON, Canada.,Imaging Program, Lawson Health Research Institute, 750 Base Line Road E, London, ON, N6C 2R5, Canada
| | - Aaron Ward
- Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada.,London Health Sciences Centre, London, ON, Canada.,Baines Imaging Research Laboratory, London, ON, Canada.,Department of Oncology, The University of Western Ontario, London, ON, Canada
| | - Ting-Yim Lee
- Department of Medical Biophysics, The University of Western Ontario, London, ON, Canada. .,Robarts Research Institute, The University of Western Ontario, London, ON, Canada. .,Imaging Program, Lawson Health Research Institute, 750 Base Line Road E, London, ON, N6C 2R5, Canada. .,Department of Oncology, The University of Western Ontario, London, ON, Canada. .,Department of Medical Imaging, The University of Western Ontario, London, ON, Canada.
| |
Collapse
|
4
|
Papp L, Spielvogel CP, Grubmüller B, Grahovac M, Krajnc D, Ecsedi B, Sareshgi RAM, Mohamad D, Hamboeck M, Rausch I, Mitterhauser M, Wadsak W, Haug AR, Kenner L, Mazal P, Susani M, Hartenbach S, Baltzer P, Helbich TH, Kramer G, Shariat SF, Beyer T, Hartenbach M, Hacker M. Supervised machine learning enables non-invasive lesion characterization in primary prostate cancer with [ 68Ga]Ga-PSMA-11 PET/MRI. Eur J Nucl Med Mol Imaging 2021; 48:1795-1805. [PMID: 33341915 PMCID: PMC8113201 DOI: 10.1007/s00259-020-05140-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Risk classification of primary prostate cancer in clinical routine is mainly based on prostate-specific antigen (PSA) levels, Gleason scores from biopsy samples, and tumor-nodes-metastasis (TNM) staging. This study aimed to investigate the diagnostic performance of positron emission tomography/magnetic resonance imaging (PET/MRI) in vivo models for predicting low-vs-high lesion risk (LH) as well as biochemical recurrence (BCR) and overall patient risk (OPR) with machine learning. METHODS Fifty-two patients who underwent multi-parametric dual-tracer [18F]FMC and [68Ga]Ga-PSMA-11 PET/MRI as well as radical prostatectomy between 2014 and 2015 were included as part of a single-center pilot to a randomized prospective trial (NCT02659527). Radiomics in combination with ensemble machine learning was applied including the [68Ga]Ga-PSMA-11 PET, the apparent diffusion coefficient, and the transverse relaxation time-weighted MRI scans of each patient to establish a low-vs-high risk lesion prediction model (MLH). Furthermore, MBCR and MOPR predictive model schemes were built by combining MLH, PSA, and clinical stage values of patients. Performance evaluation of the established models was performed with 1000-fold Monte Carlo (MC) cross-validation. Results were additionally compared to conventional [68Ga]Ga-PSMA-11 standardized uptake value (SUV) analyses. RESULTS The area under the receiver operator characteristic curve (AUC) of the MLH model (0.86) was higher than the AUC of the [68Ga]Ga-PSMA-11 SUVmax analysis (0.80). MC cross-validation revealed 89% and 91% accuracies with 0.90 and 0.94 AUCs for the MBCR and MOPR models respectively, while standard routine analysis based on PSA, biopsy Gleason score, and TNM staging resulted in 69% and 70% accuracies to predict BCR and OPR respectively. CONCLUSION Our results demonstrate the potential to enhance risk classification in primary prostate cancer patients built on PET/MRI radiomics and machine learning without biopsy sampling.
Collapse
Affiliation(s)
- L Papp
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - C P Spielvogel
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics, Vienna, Austria
| | - B Grubmüller
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - M Grahovac
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - D Krajnc
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - B Ecsedi
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - R A M Sareshgi
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - D Mohamad
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - M Hamboeck
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - I Rausch
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - M Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - W Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - A R Haug
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics, Vienna, Austria
| | - L Kenner
- Christian Doppler Laboratory for Applied Metabolomics, Vienna, Austria
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - P Mazal
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - M Susani
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - P Baltzer
- Department of Biomedical Imaging and Image-guided Therapy, Division of Common General and Pediatric Radiology, Medical University of Vienna, Vienna, Austria
| | - T H Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Common General and Pediatric Radiology, Medical University of Vienna, Vienna, Austria
| | - G Kramer
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - S F Shariat
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - T Beyer
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - M Hartenbach
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - M Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
5
|
Lee I, Lim I, Byun BH, Kim BI, Choi CW, Woo SK, Lee KC, Kang JH, Kil HS, Park C, Chi DY, Park J, Song K, Lim SM. A microdose clinical trial to evaluate [ 18F]Florastamin as a positron emission tomography imaging agent in patients with prostate cancer. Eur J Nucl Med Mol Imaging 2020; 48:95-102. [PMID: 32458006 DOI: 10.1007/s00259-020-04883-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/19/2020] [Indexed: 01/11/2023]
Abstract
PURPOSE To evaluate the biodistribution of [18F]Florastamin, a novel 18F-labelled positron emission tomography (PET) tracer for prostate-specific membrane antigen (PSMA) for the diagnosis of prostate cancer. METHODS PET was performed for five healthy controls and 10 patients with prostate cancer at 0, 10, 30, 70, and 120 mins after injecting 370 MBq of [18F]Florastamin. The maximum standardised uptake value (SUVmax) was evaluated in the primary tumour. The mean SUVmax (SUVmean) was evaluated in normal organs. Furthermore, the residence time was evaluated by assessing radioactivity in each organ. The internal radiation dosimetry was calculated using the OLINDA/EXM software. RESULTS The SUVmax in primary tumours increased with time. A favourable tumour to background ratio was also observed over time. Multiple lymph nodes and bone metastases were also evaluated and showed a similar pattern to SUVmax in the primary tumour. In one patient, a tiny lymph node metastasis was identified using [18F]Florastamin PET, which was not observed using other modalities, and was histologically confirmed. The highest absorbed dose was observed in the kidney (0.062 ± 0.015 mGy/MBq), followed by the bladder (0.032 ± 0.013 mGy/MBq), liver (0.022 ± 0.006 mGy/MBq), and salivary gland (0.018 ± 0.006 mGy/MBq). The effective dose with a 370 MBq injection of [18F]Florastamin was 1.81 mSv. No adverse events related to [18F]Florastamin were reported. CONCLUSION We identified a novel PSMA-targeted PET ligand, [18F]Florastamin, for imaging prostate cancer. [18F]Florastamin showed a high SUVmax and relatively high tumour to background ratio in both primary tumour and metastatic lesions, which suggests its high sensitivity to detect tumours without any adverse events. TRIAL REGISTRATION KCT0003924 registered at https://cris.nih.go.kr/ .
Collapse
Affiliation(s)
- Inki Lee
- Department of Nuclear Medicine, Korea Cancer Centre Hospital, Korea Institute of Radiological and Medical Sciences, 75, Nowon-ro, Nowon-gu, Seoul, South Korea
| | - Ilhan Lim
- Department of Nuclear Medicine, Korea Cancer Centre Hospital, Korea Institute of Radiological and Medical Sciences, 75, Nowon-ro, Nowon-gu, Seoul, South Korea.
| | - Byung Hyun Byun
- Department of Nuclear Medicine, Korea Cancer Centre Hospital, Korea Institute of Radiological and Medical Sciences, 75, Nowon-ro, Nowon-gu, Seoul, South Korea
| | - Byung Il Kim
- Department of Nuclear Medicine, Korea Cancer Centre Hospital, Korea Institute of Radiological and Medical Sciences, 75, Nowon-ro, Nowon-gu, Seoul, South Korea
| | - Chang Woon Choi
- Department of Nuclear Medicine, Korea Cancer Centre Hospital, Korea Institute of Radiological and Medical Sciences, 75, Nowon-ro, Nowon-gu, Seoul, South Korea
| | - Sang-Keun Woo
- Division of Applied RI, Research Institute of Radiological & Medical Sciences, Korea Institutes of Radiological & Medical Sciences, Seoul, South Korea
| | - Kyo Chul Lee
- Division of Applied RI, Research Institute of Radiological & Medical Sciences, Korea Institutes of Radiological & Medical Sciences, Seoul, South Korea
| | - Joo Hyun Kang
- Division of Applied RI, Research Institute of Radiological & Medical Sciences, Korea Institutes of Radiological & Medical Sciences, Seoul, South Korea
| | - Hee Seup Kil
- Research Institute of Labeling, FutureChem Co., Ltd., Seoul, South Korea
| | - Chansoo Park
- Research Institute of Labeling, FutureChem Co., Ltd., Seoul, South Korea
| | - Dae Yoon Chi
- Research Institute of Labeling, FutureChem Co., Ltd., Seoul, South Korea.,Department of Chemistry, Sogang University, Seoul, South Korea
| | - Jongwook Park
- Department of Urology, Korea Cancer Centre Hospital, Korea Institute of Radiological and Medical Sciences, 75, Nowon-ro, Nowon-gu, Seoul, South Korea
| | - Kanghyon Song
- Department of Urology, Korea Cancer Centre Hospital, Korea Institute of Radiological and Medical Sciences, 75, Nowon-ro, Nowon-gu, Seoul, South Korea.
| | - Sang Moo Lim
- Department of Nuclear Medicine, Korea Cancer Centre Hospital, Korea Institute of Radiological and Medical Sciences, 75, Nowon-ro, Nowon-gu, Seoul, South Korea
| |
Collapse
|
6
|
Ryg U, Lilleby W, Hole KH, Lund-Iversen M, Switlyk MD. Local Recurrence of Prostate Cancer to the Intersphincteric Space: A Case Report. Urology 2020; 140:18-21. [PMID: 32199872 DOI: 10.1016/j.urology.2020.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 02/24/2020] [Accepted: 03/07/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Una Ryg
- Department of Radiology, Radiumhospitalet, Oslo University Hospital, Oslo, Norway
| | - Wolfgang Lilleby
- Department of Oncology, Radiumhospitalet, Oslo University Hospital, Oslo, Norway
| | - Knut H Hole
- Department of Radiology, Radiumhospitalet, Oslo University Hospital, Oslo, Norway
| | - Marius Lund-Iversen
- Department of Pathology, Radiumhospitalet, Oslo University Hospital, Oslo, Norway
| | - Marta D Switlyk
- Department of Radiology, Radiumhospitalet, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
7
|
Farolfi A, Lima GM, Oyen W, Fanti S. Molecular Imaging and Theranostics—A Multidisciplinary Approach. Semin Nucl Med 2019; 49:247-254. [DOI: 10.1053/j.semnuclmed.2019.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Schillaci O, Scimeca M, Trivigno D, Chiaravalloti A, Facchetti S, Anemona L, Bonfiglio R, Santeusanio G, Tancredi V, Bonanno E, Urbano N, Mauriello A. Prostate cancer and inflammation: A new molecular imaging challenge in the era of personalized medicine. Nucl Med Biol 2019; 68-69:66-79. [PMID: 30770226 DOI: 10.1016/j.nucmedbio.2019.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/23/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
The relationship between cancer and inflammation is one of the most important fields for both clinical and translational research. Despite numerous studies reported interesting and solid data about the prognostic value of the presence of inflammatory infiltrate in cancers, the biological role of inflammation in prostate cancer development is not yet fully clarified. The characterization of molecular pathways that connect altered inflammatory response and prostate cancer progression can provide the scientific rationale for the identification of new prognostic and predictive biomarkers. Specifically, the detection of infiltrating immune cells or related-cytokines by histology and/or by molecular imaging techniques could profoundly change the management of prostate cancer patients. In this context, the anatomic pathology and imaging diagnostic teamwork can provide a valuable support for the validation of new targets for diagnosis and therapy of prostate cancer lesions associated to the inflammatory infiltrate. The aim of this review is to summarize the current literature about the role of molecular imaging technique and anatomic pathology in the study of the mutual interaction occurring between prostate cancer and inflammation. Specifically, we reported the more recent advances in molecular imaging and histological methods for the early detection of prostate lesions associated to the inflammatory infiltrate.
Collapse
Affiliation(s)
- Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; University of San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy.
| | - Donata Trivigno
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Simone Facchetti
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Lucia Anemona
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Giuseppe Santeusanio
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Virginia Tancredi
- University of San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy; Department of Systems Medicine, School of Sport and Exercise Sciences, University of Rome "Tor Vergata", Rome, Italy
| | - Elena Bonanno
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Nicoletta Urbano
- Nuclear Medicine, Policlinico "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| |
Collapse
|