1
|
Bocanegra-Zapata A, Hernández-López H, Leyva-Ramos S, Cervantes-Villagrana RD, Galván-Valencia M, Veyna-Hurtado LA, Tovar NGR, Albores-García D, de la Torre JAF, Cervantes-Villagrana AR. Norfloxacin Derivative with Carbazole at C-7 FQB-1 Induces Cytotoxic, Antiproliferative, and Antitumor Effects in an Experimental Lung Carcinoma Model. Pharmaceuticals (Basel) 2025; 18:664. [PMID: 40430482 PMCID: PMC12114400 DOI: 10.3390/ph18050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/15/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Cancer remains a leading cause of morbidity and mortality worldwide. According to the World Health Organization (WHO), lung cancer is the most prevalent type of cancer among both men and women. Despite the various pharmacological and biological treatments available for lung cancer, their effectiveness has often fallen short, and the side effects can be severe. Therefore, there is an ongoing need to identify and develop novel compounds with enhanced anti-tumor efficacy and improved safety profiles. Research has shown that fluoroquinolone derivatives exhibit a broad cytotoxic spectrum comparable to other drugs used in clinical chemotherapy. Objective: The aim of this work was to synthesize and evaluate the cytotoxic, anti-proliferative, and anti-tumor effects of FQB-1, a novel fluoroquinolone derivative. Results: In silico molecular docking analysis demonstrated a strong interaction between FQB-1 and human topoisomerase, with a binding affinity score of -9.8 kcal/mol. In vitro cytotoxicity and anti-proliferative assays were conducted using the Lewis Lung Carcinoma (LLC) cell line. FQB-1 was tested at concentrations of 2.5, 5.0, 25.0, 50.0, 100.0, and 150.0 µg/mL. Significant cytotoxic and anti-proliferative effects were observed at concentrations of 50-150 µg/mL after 24 h of treatment. To evaluate FQB-1's efficacy in vivo, a syngeneic tumor model was established in C57BL/6 mice. Treatment with FQB-1 (100 mg/kg) resulted in a marked reduction in tumor volume compared to the untreated control group. Histopathological analysis of tumor tissues from treated animals revealed a decrease in mitotic index and an increase in necrotic regions, indicating compromised tumor viability. Conclusions: FQB-1 exhibits cytotoxic and anti-proliferative effects and can reduce tumor growth while compromising tumor viability.
Collapse
Affiliation(s)
- Alondra Bocanegra-Zapata
- Maestría en Ciencia y Tecnología Química, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico;
- Laboratorio de Investigación en Síntesis y Modificación Química, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico;
- Laboratorio de Investigación en Terapéutica Experimental, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (L.A.V.-H.); (N.G.R.T.)
| | - Hiram Hernández-López
- Laboratorio de Investigación en Síntesis y Modificación Química, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico;
- Laboratorio de Investigación en Síntesis Orgánica, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Postosí 78210, Mexico;
| | - Socorro Leyva-Ramos
- Laboratorio de Investigación en Síntesis Orgánica, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Postosí 78210, Mexico;
| | - Rodolfo Daniel Cervantes-Villagrana
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Marisol Galván-Valencia
- Laboratorio de Neuropatología y Productos Naturales, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98050, Mexico;
| | - L. Angel Veyna-Hurtado
- Laboratorio de Investigación en Terapéutica Experimental, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (L.A.V.-H.); (N.G.R.T.)
| | - Norma Guadalupe Ramírez Tovar
- Laboratorio de Investigación en Terapéutica Experimental, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (L.A.V.-H.); (N.G.R.T.)
| | - Damaris Albores-García
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Unidad Sede Sur, Mexico City 14330, Mexico;
| | - Juan Armando Flores de la Torre
- Laboratorio de Investigación en Toxicología y Farmacia, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico;
| | - Alberto Rafael Cervantes-Villagrana
- Laboratorio de Investigación en Terapéutica Experimental, Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (L.A.V.-H.); (N.G.R.T.)
| |
Collapse
|
2
|
Vashi R, Patel BM. Roles of ARF tumour suppressor protein in lung cancer: time to hit the nail on the head! Mol Cell Biochem 2021; 476:1365-1375. [PMID: 33392921 DOI: 10.1007/s11010-020-03996-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022]
Abstract
Owing to its poor prognosis, the World Health Organization (WHO) lists lung cancer on top of the list when it comes to growing mortality rates and incidence. Usually, there are two types of lung cancer, small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC), which also includes adenocarcinoma, squamous cell carcinoma and large cell carcinomas. ARF, also known in humans as p14ARF and in the mouse as p19ARF, is a nucleolar protein and a member of INK4, a family of cyclin-independent kinase inhibitors (CKI). These genes are clustered on chromosome number 9p21 within the locus of CDKN2A. NSCLC has reported the role of p14ARF as a potential target. p14ARF has a basic mechanism to inhibit mouse double minute 2 protein that exhibits inhibitory action on p53, a phosphoprotein tumour suppressor, thus playing a role in various tumour-related activities such as growth inhibition, DNA damage, autophagy, apoptosis, cell cycle arrest and others. Extensive cancer research is ongoing and updated reports regarding the role of ARF in lung cancer are available. This article summarizes the available lung cancer ARF data, its molecular mechanisms and its associated signalling pathways. Attempts have been made to show how p14ARF functions in different types of lung cancer providing a thought to look upon ARF as a new target for treating the debilitating condition of lung cancer.
Collapse
Affiliation(s)
- Ruju Vashi
- Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | - Bhoomika M Patel
- Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
3
|
Cardona AF, Rojas L, Zatarain-Barrón ZL, Ruiz-Patiño A, Ricaurte L, Corrales L, Martín C, Freitas H, Cordeiro de Lima VC, Rodriguez J, Avila J, Bravo M, Archila P, Carranza H, Vargas C, Otero J, Barrón F, Karachaliou N, Rosell R, Arrieta O. Multigene Mutation Profiling and Clinical Characteristics of Small-Cell Lung Cancer in Never-Smokers vs. Heavy Smokers (Geno1.3-CLICaP). Front Oncol 2019; 9:254. [PMID: 31058075 PMCID: PMC6481272 DOI: 10.3389/fonc.2019.00254] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
Objectives: Lung cancer is a heterogeneous disease. Presentation and prognosis are known to vary according to several factors, such as genetic and demographic characteristics. Small-cell lung cancer incidence is increasing in never-smokers. However, the disease phenotype in this population is different compared with patients who have a smoking history. Material and Methods: To further investigate the clinical and genetic characteristics of this patient subgroup, a cohort of small cell lung cancer patients was divided into smokers (n = 10) and never/ever-smokers (n = 10). A somatic mutation profile was obtained using a comprehensive NGS assay. Clinical outcomes were compared using the Kaplan-Meier method and Cox proportional models. Results: Median age was 63 years (46–81), 40% were men, and 90% had extended disease. Smoker patients had significantly more cerebral metastases (p = 0.04) and were older (p = 0.03) compared to their non-smoker counterparts. For never/ever smokers, the main genetic mutations were TP53 (80%), RB1 (40%), CYLD (30%), and EGFR (30%). Smoker patients had more RB1 (80%, p = 0.04), CDKN2A (30%, p = 0.05), and CEBPA (30%, p = 0.05) mutations. Response rates to first-line therapy with etoposide plus cisplatin/carboplatin were 50% in smokers and 90% in never/ever smokers (p = 0.141). Median overall survival was significantly longer in never smokers compared with smokers (29.1 months [23.5–34.6] vs. 17.3 months [4.8–29.7]; p = 0.0054). Never/ever smoking history (HR 0.543, 95% CI 0.41–0.80), limited-stage disease (HR 0.56, 95% CI 0.40–0.91) and response to first-line platinum-based chemotherapy (HR 0.63, 95% CI 0.60–0.92) were independently associated with good prognosis. Conclusion: Our data supports that never/ever smoker patients with small-cell lung cancer have better prognosis compared to their smoker counterparts. Further, patients with never/ever smoking history who present with small-cell lung cancer have a different mutation profile compared with smokers, including a high frequency of EGFR, MET, and SMAD4 mutations. Further studies are required to assess whether the differential mutation profile is a consequence of a diverse pathological mechanism for disease onset.
Collapse
Affiliation(s)
- Andrés F Cardona
- Clinical and Translational Oncology Group, Clinica del Country, Bogotá, Colombia.,Foundation for Clinical and Applied Cancer Research, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Leonardo Rojas
- Clinical and Translational Oncology Group, Clinica del Country, Bogotá, Colombia.,Foundation for Clinical and Applied Cancer Research, Bogotá, Colombia.,Clinical Oncology Department, Clínica Colsanitas, Bogotá, Colombia
| | | | | | - Luisa Ricaurte
- Foundation for Clinical and Applied Cancer Research, Bogotá, Colombia
| | - Luis Corrales
- Department of Oncology, Hospital San Juan de Dios, San José, Costa Rica
| | - Claudio Martín
- Medical Oncology Group, Fleming Institute, Buenos Aires, Argentina
| | - Helano Freitas
- Department of Oncology, A.C. Camargo Cancer Center, São Paulo, Brazil
| | | | - July Rodriguez
- Foundation for Clinical and Applied Cancer Research, Bogotá, Colombia
| | - Jenny Avila
- Foundation for Clinical and Applied Cancer Research, Bogotá, Colombia
| | - Melissa Bravo
- Foundation for Clinical and Applied Cancer Research, Bogotá, Colombia
| | - Pilar Archila
- Foundation for Clinical and Applied Cancer Research, Bogotá, Colombia
| | - Hernán Carranza
- Clinical and Translational Oncology Group, Clinica del Country, Bogotá, Colombia.,Foundation for Clinical and Applied Cancer Research, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Carlos Vargas
- Clinical and Translational Oncology Group, Clinica del Country, Bogotá, Colombia.,Foundation for Clinical and Applied Cancer Research, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Jorge Otero
- Clinical and Translational Oncology Group, Clinica del Country, Bogotá, Colombia.,Foundation for Clinical and Applied Cancer Research, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Feliciano Barrón
- Thoracic Oncology Unit, National Cancer Institute (INCan), Mexico City, Mexico
| | - Niki Karachaliou
- Instituto Oncológico Dr. Rosell (IOR), Quirón-Dexeus University Institute, Barcelona, Spain.,Instituto Oncológico Dr. Rosell (IOR), Sagrat Cor Hospital, Barcelona, Spain
| | - Rafael Rosell
- Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Barcelona, Spain
| | - Oscar Arrieta
- Thoracic Oncology Unit, National Cancer Institute (INCan), Mexico City, Mexico
| |
Collapse
|