1
|
Olbromski PJ, Bogacz A, Bukowska M, Kamiński A, Moszyński R, Pawlik P, Szeliga A, Kotrych K, Czerny B. Analysis of the Polymorphisms and Expression Levels of the BCL2, BAX and c-MYC Genes in Patients with Ovarian Cancer. Int J Mol Sci 2023; 24:16309. [PMID: 38003498 PMCID: PMC10671037 DOI: 10.3390/ijms242216309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Ovarian cancer (OC) is one of the biggest problems in gynecological oncology and is one of the most lethal cancers in women worldwide. Most patients with OC are diagnosed at an advanced stage; therefore, there is an urgent need to find new biomarkers for this disease. Gene expression profiling is proving to be a very effective tool for exploring new molecular markers for OC patients, although the relationship between such markers and patient survival and clinical outcomes is still elusive. Moreover, polymorphisms in genes encoding both apoptosis-associated proteins and oncoproteins may serve as key markers of cancer susceptibility. The aim of our study was to analyze the polymorphisms and expressions of the BCL2, BAX and c-MYC genes in a group of 198 women, including 98 with OC. The polymorphisms and mRNA expressions of the BCL2, BAX and c-MYC genes were analyzed using real-time PCR. The analysis of the BAX (rs4645878; G>A) and c-MYC (rs4645943; C>T) polymorphisms showed no association with ovarian cancer risk. The BCL2 polymorphism (rs2279115; C>A) showed a significant difference in the frequency of genotypes between the studied groups (CC: 23.47% vs. 16.00%, AA: 25.51% vs. 37.00%; p = 0.046; OR = 1.61). Furthermore, the expression levels of the BCL2 and c-MYC genes showed a decrease at the transcript level for OC patients compared to the control group (BCL2: 17.46% ± 3.26 vs. 100% ± 8.32; p < 0.05; c-MYC: 37.56% ± 8.16 vs. 100% ± 9.12; p < 0.05). No significant changes in the mRNA level were observed for the BAX gene (104.36% ± 9.26 vs. 100% ± 9.44; p > 0.05). A similar relationship was demonstrated in the case of the protein expressions of the studied genes. These findings suggest that the CC genotype and C allele of the BCL2 polymorphism could be genetic risk factors for OC development. A gene expression analysis indicated that BCL2 and c-MYC are associated with OC risk.
Collapse
Affiliation(s)
- Piotr Józef Olbromski
- Clinic of Operational Gynecology, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland; (P.J.O.); (P.P.)
| | - Anna Bogacz
- Department of Personalized Medicine and Cell Therapy, Regional Blood Center, Marcelińska 44, 60-354 Poznan, Poland;
| | - Marta Bukowska
- Department of Personalized Medicine and Cell Therapy, Regional Blood Center, Marcelińska 44, 60-354 Poznan, Poland;
| | - Adam Kamiński
- Department of Orthopedics and Traumatology, Independent Public Clinical Hospital No. 1, Pomeranian Medical University, UniiLubelskiej 1, 71-252 Szczecin, Poland;
| | - Rafał Moszyński
- Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland;
| | - Piotr Pawlik
- Clinic of Operational Gynecology, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland; (P.J.O.); (P.P.)
| | - Anna Szeliga
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland;
| | - Katarzyna Kotrych
- Department of General and Dental Radiology, Pomeranian Medical University in Szczecin, al. Powstańców Wielkopolskch 72, 70-111 Szczecin, Poland;
| | - Bogusław Czerny
- Department of Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, Żołnierska 48, 71-230 Szczecin, Poland;
| |
Collapse
|
2
|
Lou S, Huang X, Tian X, Wang Z, Lin A, Dai H, Zhou J, Ruan J, Yuan L, Wang J. Investigation of the relationship between CMYC gene polymorphisms and glioma susceptibility in Chinese children. Cancer Invest 2021; 39:819-825. [PMID: 34325590 DOI: 10.1080/07357907.2021.1955374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Glioma is a common central nervous system tumors in children. CMYC has a range of functions that are disrupted in various tumor cells, and may contribute to the occurrence and development of glioma. Two CMYC single nucleotide polymorphisms (rs4645943C > T and rs2070583 A > G) were genotyped in 190 cases and 248 controls from Wenzhou and Guangzhou hospitals. After adjusting for age and sex, odds ratio and 95% confidence interval values were calculated by logistic regression to evaluate the correlation between CMYC gene polymorphisms and glioma risk; no significant associations were detected. These results require future validation in a larger sample cohort.
Collapse
Affiliation(s)
- Susu Lou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xiaokai Huang
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xiaoqian Tian
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Zhen Wang
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Ao Lin
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Hanqi Dai
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jingying Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jichen Ruan
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Li Yuan
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Juxiang Wang
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| |
Collapse
|
3
|
Chen H, Guan Q, Guo H, Miao L, Zhuo Z. The Genetic Changes of Hepatoblastoma. Front Oncol 2021; 11:690641. [PMID: 34367972 PMCID: PMC8335155 DOI: 10.3389/fonc.2021.690641] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatoblastoma is the most common malignant liver cancer in childhood. The etiology of hepatoblastoma remains obscure. Hepatoblastoma is closely related to genetic syndromes, hinting that hepatoblastoma is a genetic predisposition disease. However, no precise exposures or genetic events are reported to hepatoblastoma occurrence. During the past decade, significant advances have been made in the understanding of etiology leading to hepatoblastoma, and several important genetic events that appear to be important for the development and progression of this tumor have been identified. Advances in our understanding of the genetic changes that underlie hepatoblastoma may translate into better patient outcomes. Single nucleotide polymorphisms (SNPs) have been generally applied in the research of etiology's exploration, disease treatment, and prognosis assessment. Here, we reviewed and discussed the molecular epidemiology, especially SNPs progresses in hepatoblastoma, to provide references for future studies and promote the study of hepatoblastoma's etiology.
Collapse
Affiliation(s)
- Huitong Chen
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qian Guan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Huiqin Guo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Amjadi-Moheb F, Paniri A, Akhavan-Niaki H. Insights into the Links between MYC and 3D Chromatin Structure and Epigenetics Regulation: Implications for Cancer Therapy. Cancer Res 2021; 81:1925-1936. [PMID: 33472888 DOI: 10.1158/0008-5472.can-20-3613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022]
Abstract
MYC is embedded in the transcriptional oasis of the 8q24 gene desert. A plethora of genomic elements has roles in MYC aberrant expression in cancer development by interacting with transcription factors and epigenetics regulators as well as altering the structure of chromatin at the MYC locus and tissue-specific long-range enhancer-promoter contacts. Furthermore, MYC is a master regulator of several human cancers by modulating the transcription of numerous cancer-related genes through epigenetic mechanisms. This review provides a comprehensive overview of the three-dimensional genomic organization around MYC and the role of epigenetic machinery in transcription and function of MYC as well as discusses various epigenetic-targeted therapeutic strategies in MYC-driven cancers.
Collapse
Affiliation(s)
- Fatemeh Amjadi-Moheb
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Alireza Paniri
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|