1
|
Imere A, Foster NC, Hajiali H, Okur KE, Wright AL, Barroso IA, Haj AJE. Enhanced chondrogenic potential in GelMA-based 3D cartilage model via Wnt3a surface immobilization. Sci Rep 2024; 14:15022. [PMID: 38951570 PMCID: PMC11217376 DOI: 10.1038/s41598-024-65970-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
Cartilage tissue engineering aims to develop functional substitutes for treating cartilage defects and osteoarthritis. Traditional two-dimensional (2D) cell culture systems lack the complexity of native cartilage, leading to the development of 3D regenerative cartilage models. In this study, we developed a 3D model using Gelatin Methacryloyl (GelMA)-based hydrogels seeded with Y201 cells, a bone marrow mesenchymal stem cell line. The model investigated chondrogenic differentiation potential in response to Wnt3a stimulation within the GelMA scaffold and validated using known chondrogenic agonists. Y201 cells demonstrated suitability for the model, with increased proteoglycan content and upregulated chondrogenic marker expression under chondrogenic conditions. Wnt3a enhanced cell proliferation, indicating activation of the Wnt/β-catenin pathway, which plays a role in cartilage development. GelMA hydrogels provided an optimal scaffold, supporting cell viability and proliferation. The 3D model exhibited consistent responses to chondrogenic agonists, with TGF-β3 enhancing cartilage-specific extracellular matrix (ECM) production and chondrogenic differentiation. The combination of Wnt3a and TGF-β3 showed synergistic effects, promoting chondrogenic differentiation and ECM production. This study presents a 3D regenerative cartilage model with potential for investigating cartilage biology, disease mechanisms, and drug screening. The model provides insights into complex cartilage regeneration mechanisms and offers a platform for developing therapeutic approaches for cartilage repair and osteoarthritis treatment.
Collapse
Affiliation(s)
- Angela Imere
- Healthcare Technologies Institute, Institute of Translational Medicine, National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nicola C Foster
- Healthcare Technologies Institute, Institute of Translational Medicine, National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Hadi Hajiali
- Healthcare Technologies Institute, Institute of Translational Medicine, National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Kerime Ebrar Okur
- Healthcare Technologies Institute, Institute of Translational Medicine, National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Abigail L Wright
- Healthcare Technologies Institute, Institute of Translational Medicine, National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ines A Barroso
- Healthcare Technologies Institute, Institute of Translational Medicine, National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alicia J El Haj
- Healthcare Technologies Institute, Institute of Translational Medicine, National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
2
|
Zhang C, Sun C, Zhao Y, Ye B, Yu G. Signaling pathways of liver regeneration: Biological mechanisms and implications. iScience 2024; 27:108683. [PMID: 38155779 PMCID: PMC10753089 DOI: 10.1016/j.isci.2023.108683] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023] Open
Abstract
The liver possesses a unique regenerative ability to restore its original mass, in this regard, partial hepatectomy (PHx) and partial liver transplantation (PLTx) can be executed smoothly and safely, which has important implications for the treatment of liver disease. Liver regeneration (LR) can be the very complicated procedure that involves multiple cytokines and transcription factors that interact with each other to activate different signaling pathways. Activation of these pathways can drive the LR process, which can be divided into three stages, namely, the initiation, progression, and termination stages. Therefore, it is important to investigate the pathways involved in LR to elucidate the mechanism of LR. This study reviews the latest research on the key signaling pathways in the different stages of LR.
Collapse
Affiliation(s)
- Chunyan Zhang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Caifang Sun
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Yabin Zhao
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Bingyu Ye
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - GuoYing Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
3
|
Akiyama S, Saku N, Miyata S, Ite K, Nonaka H, Toyoda M, Kamiya A, Kiyono T, Kimura T, Kasahara M, Umezawa A. Drug metabolic activity as a selection factor for pluripotent stem cell-derived hepatic progenitor cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:155-178. [PMID: 37678970 DOI: 10.1016/bs.pmbts.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
As a metabolic organ, the liver plays a variety of roles, including detoxification. It has been difficult to obtain stable supplies of hepatocytes for transplantation and for accurate hepatotoxicity determination in drug discovery research. Human pluripotent stem cells, capable of unlimited self-renewal, may be a promising source of hepatocytes. In order to develop a stable supply of embryonic stem cell (ESC)-derived hepatocytes, we have purified human ESC-derived hepatic progenitor cells with exposure to cytocidal puromycin by using their ability to metabolize drugs. Hepatic progenitor cells stably proliferated at least 220-fold over 120 days, maintaining hepatic progenitor cell-like properties. High drug-metabolizing hepatic progenitor cells can be matured into liver cells by suppressing hepatic proliferative signals. The method we developed enables the isolation and proliferation of functional hepatic progenitors from human ESCs, thereby providing a stable supply of high-quality cell resources at high efficiency. Cells produced by this method may facilitate cell therapy for hepatic diseases and reliable drug discovery research.
Collapse
Affiliation(s)
- Saeko Akiyama
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan; Department of Advanced Pediatric Medicine (National Center for Child Health and Development), Tohoku University School of Medicine, Miyagi, Japan
| | - Noriaki Saku
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Shoko Miyata
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Kenta Ite
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Hidenori Nonaka
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Masashi Toyoda
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan; Research team for Aging Science (Vascular Medicine), Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Tohru Kimura
- Laboratory of Stem Cell Biology, Department of BioSciences, Kitasato University School of Science, Kanagawa, Japan
| | - Mureo Kasahara
- Department of Pathology, National Center for Child Health and Development Hospital, Tokyo, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan.
| |
Collapse
|