1
|
Jain K, McCarley SC, Mukhtar G, Ferlin A, Fleming A, Morris-Rosendahl DJ, Shovlin CL. Pathogenic Variant Frequencies in Hereditary Haemorrhagic Telangiectasia Support Clinical Evidence of Protection from Myocardial Infarction. J Clin Med 2023; 13:250. [PMID: 38202257 PMCID: PMC10779873 DOI: 10.3390/jcm13010250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Hereditary haemorrhagic telangiectasia (HHT) is a vascular dysplasia inherited as an autosomal dominant trait, due to a single heterozygous loss-of-function variant, usually in ACVRL1 (encoding activin receptor-like kinase 1 [ALK1]), ENG (encoding endoglin [CD105]), or SMAD4. In a consecutive single-centre series of 37 positive clinical genetic tests performed in 2021-2023, a skewed distribution pattern was noted, with 30 of 32 variants reported only once, but ACVRL1 c.1231C>T (p.Arg411Trp) identified as the disease-causal gene in five different HHT families. In the same centre's non-overlapping 1992-2020 series where 110/134 (82.1%) HHT-causal variants were reported only once, ACVRL1 c.1231C>T (p.Arg411Trp) was identified in nine further families. In a 14-country, four-continent HHT Mutation Database where 181/250 (72.4%) HHT-causal variants were reported only once, ACVRL1 c.1231C>T (p.Arg411Trp) was reported by 12 different laboratories, the adjacent ACVRL1 c.1232G>A (p.Arg411Gln) by 14, and ACVRL1 c.1120C>T (p.Arg374Trp) by 18. Unlike the majority of HHT-causal ACVRL1 variants, these encode ALK1 protein that reaches the endothelial cell surface but fails to signal. Six variants of this type were present in the three series and were reported 6.8-25.5 (mean 8.9) times more frequently than the other ACVRL1 missense variants (all p-values < 0.0039). Noting lower rates of myocardial infarction reported in HHT, we explore potential mechanisms, including a selective paradigm relevant to ALK1's role in the initiating event of atherosclerosis, where a plausible dominant negative effect of these specific variants can be proposed. In conclusion, there is an ~9-fold excess of kinase-inactive, cell surface-expressed ACVRL1/ALK1 pathogenic missense variants in HHT. The findings support further examination of differential clinical and cellular phenotypes by HHT causal gene molecular subtypes.
Collapse
Affiliation(s)
- Kinshuk Jain
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (K.J.); (S.C.M.); (G.M.); (D.J.M.-R.)
| | - Sarah C. McCarley
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (K.J.); (S.C.M.); (G.M.); (D.J.M.-R.)
| | - Ghazel Mukhtar
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (K.J.); (S.C.M.); (G.M.); (D.J.M.-R.)
| | - Anna Ferlin
- Clinical Genetics and Genomics Laboratory, Royal Brompton Hospital, Guy’s and St Thomas’ NHS Trust, London SE1 7EH, UK; (A.F.); (A.F.)
| | - Andrew Fleming
- Clinical Genetics and Genomics Laboratory, Royal Brompton Hospital, Guy’s and St Thomas’ NHS Trust, London SE1 7EH, UK; (A.F.); (A.F.)
| | - Deborah J. Morris-Rosendahl
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (K.J.); (S.C.M.); (G.M.); (D.J.M.-R.)
- Clinical Genetics and Genomics Laboratory, Royal Brompton Hospital, Guy’s and St Thomas’ NHS Trust, London SE1 7EH, UK; (A.F.); (A.F.)
| | - Claire L. Shovlin
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (K.J.); (S.C.M.); (G.M.); (D.J.M.-R.)
- Specialist Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London W12 0HS, UK
- Social, Genetic and Environmental Determinants of Health, NIHR Imperial Biomedical Research Centre, London W2 1NY, UK
| |
Collapse
|
2
|
McCarley SC, Murphy DA, Thompson J, Shovlin CL. Pharmacogenomic Considerations for Anticoagulant Prescription in Patients with Hereditary Haemorrhagic Telangiectasia. J Clin Med 2023; 12:7710. [PMID: 38137783 PMCID: PMC10744266 DOI: 10.3390/jcm12247710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Hereditary haemorrhagic telangiectasia (HHT) is a vascular dysplasia that commonly results in bleeding but with frequent indications for therapeutic anticoagulation. Our aims were to advance the understanding of drug-specific intolerance and evaluate if there was an indication for pharmacogenomic testing. Genes encoding proteins involved in the absorption, distribution, metabolism, and excretion of warfarin, heparin, and direct oral anticoagulants (DOACs) apixaban, rivaroxaban, edoxaban, and dabigatran were identified and examined. Linkage disequilibrium with HHT genes was excluded, before variants within these genes were examined following whole genome sequencing of general and HHT populations. The 44 genes identified included 5/17 actionable pharmacogenes with guidelines. The 76,156 participants in the Genome Aggregation Database v3.1.2 had 28,446 variants, including 9668 missense substitutions and 1076 predicted loss-of-function (frameshift, nonsense, and consensus splice site) variants, i.e., approximately 1 in 7.9 individuals had a missense substitution, and 1 in 71 had a loss-of-function variant. Focusing on the 17 genes relevant to usually preferred DOACs, similar variant profiles were identified in HHT patients. With HHT patients at particular risk of haemorrhage when undergoing anticoagulant treatment, we explore how pre-emptive pharmacogenomic testing, alongside HHT gene testing, may prove beneficial in reducing the risk of bleeding and conclude that HHT patients are well placed to be at the vanguard of personalised prescribing.
Collapse
Affiliation(s)
- Sarah C. McCarley
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.C.M.); (J.T.)
| | - Daniel A. Murphy
- Pharmacy Department, Imperial College Healthcare NHS Trust, London W2 1NY, UK;
- Social, Genetic and Envionmental Determinants of Health Theme, NIHR Imperial Biomedical Research Centre, London W2 1NY, UK
| | - Jack Thompson
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.C.M.); (J.T.)
| | - Claire L. Shovlin
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.C.M.); (J.T.)
- Social, Genetic and Envionmental Determinants of Health Theme, NIHR Imperial Biomedical Research Centre, London W2 1NY, UK
- Specialist Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London W12 0HS, UK
| |
Collapse
|
3
|
Medvedev KE, Schaeffer RD, Pei J, Grishin NV. Pathogenic mutation hotspots in protein kinase domain structure. Protein Sci 2023; 32:e4750. [PMID: 37572333 PMCID: PMC10464295 DOI: 10.1002/pro.4750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
Control of eukaryotic cellular function is heavily reliant on the phosphorylation of proteins at specific amino acid residues, such as serine, threonine, tyrosine, and histidine. Protein kinases that are responsible for this process comprise one of the largest families of evolutionarily related proteins. Dysregulation of protein kinase signaling pathways is a frequent cause of a large variety of human diseases including cancer, autoimmune, neurodegenerative, and cardiovascular disorders. In this study, we mapped all pathogenic mutations in 497 human protein kinase domains from the ClinVar database to the reference structure of Aurora kinase A (AURKA) and grouped them by the relevance to the disease type. Our study revealed that the majority of mutation hotspots associated with cancer are situated within the catalytic and activation loops of the kinase domain, whereas non-cancer-related hotspots tend to be located outside of these regions. Additionally, we identified a hotspot at residue R371 of the AURKA structure that has the highest number of exclusively non-cancer-related pathogenic mutations (21) and has not been previously discussed.
Collapse
Affiliation(s)
- Kirill E. Medvedev
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - R. Dustin Schaeffer
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Jimin Pei
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Nick V. Grishin
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
4
|
Kim BG, Jung JH, Kim MJ, Moon EH, Oh JH, Park JW, Cha HE, Kim JH, Kim YJ, Chung JW, Hahm KB, Jin HR, Jang YJ, Kim SW, Chung SK, Kim DW, Lee YJ, Kim ST. Genetic variants and clinical phenotypes in Korean patients with hereditary hemorrhagic telangiectasia. Clin Exp Otorhinolaryngol 2021; 14:399-406. [PMID: 33677851 PMCID: PMC8606283 DOI: 10.21053/ceo.2020.02124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/25/2021] [Indexed: 11/22/2022] Open
Abstract
Objectives Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular disorder characterized by recurrent epistaxis, telangiectasia, and visceral arteriovenous malformations (AVMs). Activin A receptor-like type 1 (ACVRL1/ALK1) and endoglin (ENG) are the principal genes whose mutations cause HHT. No multicenter study has yet investigated correlations between genetic variations and clinical outcomes in Korean HHT patients. Methods Seventy-two members from 40 families suspected to have HHT based on symptoms were genetically screened for pathogenic variants of ACVRL1 and ENG. Patients with genetically diagnosed HHT were also evaluated. Results In the HHT genetic screening, 42 patients from 24 of the 40 families had genetic variants that met the pathogenic criteria (pathogenic very strong, pathogenic strong, pathogenic moderate, or pathogenic supporting) based on the American College of Medical Genetics and Genomics Standards and Guidelines for either ENG or ACVRL1: 26 from 12 families (50%) for ENG, and 16 from 12 families (50%) for ACVRL1. Diagnostic screening of 42 genetically positive HHT patients based on the Curaçao criteria revealed that 24 patients (57%) were classified as having definite HHT, 17 (41%) as having probable HHT, and 1 (2%) as unlikely to have HHT. Epistaxis was the most common clinical presentation (38/42, 90%), followed by visceral AVMs (24/42, 57%) and telangiectasia (21/42, 50%). Five patients (12%) did not have a family history of HHT clinical symptoms. Conclusion Only approximately half of patients with ACVRL1 or ENG genetic variants could be clinically diagnosed as having definite HHT, suggesting that genetic screening is important to confirm the diagnosis.
Collapse
Affiliation(s)
- Bo Gyeong Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Joo-Hyun Jung
- Department of Otolaryngology-Head & Neck Surgery, Gachon University Gil Medical Center, Incheon, Korea
| | - Mi-Jung Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Eun Hyue Moon
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Jae-Hwan Oh
- Department of Otolaryngology-Head & Neck Surgery, Gachon University Gil Medical Center, Incheon, Korea
| | - Jung-Woo Park
- Department of Otolaryngology-Head & Neck Surgery, Gachon University Gil Medical Center, Incheon, Korea
| | - Heung-Eog Cha
- Department of Otolaryngology-Head & Neck Surgery, Gachon University Gil Medical Center, Incheon, Korea
| | - Ju-Hyun Kim
- Department of Gastroenterology, Gachon University Gil Medical Center, Incheon, Korea
| | - Yoon-Jae Kim
- Department of Gastroenterology, Gachon University Gil Medical Center, Incheon, Korea
| | - Jun-Won Chung
- Department of Gastroenterology, Gachon University Gil Medical Center, Incheon, Korea
| | - Ki-Baik Hahm
- Digestive Disease Center, CHA University Bundang Medical Center, Seongnam, Korea
| | | | - Yong-Ju Jang
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Wan Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Kyung Hee University, Seoul, Korea
| | - Seung-Kyu Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dae-Woo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Young Jae Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea.,Department of Biochemistry, College of Medicine, Gachon University, Incheon, Korea
| | - Seon-Tae Kim
- Department of Otolaryngology-Head & Neck Surgery, Gachon University Gil Medical Center, Incheon, Korea
| |
Collapse
|
5
|
Kim ST. Genetic Mutation Analysis Can Supplement Clinically Confirmed Hereditary Hemorrhagic Telangiectasia Populations. Clin Exp Otorhinolaryngol 2019; 12:333-334. [PMID: 31575105 PMCID: PMC6787477 DOI: 10.21053/ceo.2019.01585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 11/29/2022] Open
Affiliation(s)
- Seon Tae Kim
- Department of Otolaryngology, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| |
Collapse
|