1
|
Ivanovic A, Cheng JT, Schmeltz M, Wimmer W, Schlepuetz CM, Remenschneider AK, Bonnin A, Anschuetz L. Dynamic X-ray Microtomography vs. Laser-Doppler Vibrometry: A Comparative Study. J Assoc Res Otolaryngol 2025; 26:63-75. [PMID: 39810072 PMCID: PMC11861830 DOI: 10.1007/s10162-024-00971-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
PURPOSE There are challenges in understanding the biomechanics of the human middle ear, and established methods for studying this system show significant limitations. In this study, we evaluate a novel dynamic imaging technique based on synchrotron X-ray microtomography designed to assess the biomechanical properties of the human middle ear by comparing it to laser-Doppler vibrometry (LDV). METHODS We examined three fresh-frozen temporal bones (TB), two donated by white males and one by a Black female, using dynamic synchrotron-based X-ray microtomography for 256 and 512 Hz, stimulated at 110 dB and 120 dB sound pressure level (SPL). In addition, we performed measurements on these TBs using 1D LDV, a well-established method. RESULTS The normalized displacement values (µm/Pa) at the umbo and the posterior crus of the stapes are consistent or within 5-10 dB differences between all LDV and dynamic microtomography measurements and previously reported literature references. In general, the overall behavior is similar between the two measurement techniques. CONCLUSION In conclusion, our results demonstrate the suitability of dynamic synchrotron-based X-ray microtomography in studying the middle ear's biomechanics. However, this study shows that better standardization regarding acoustic stimulation and measurement points is needed to better compare the two measurement techniques.
Collapse
Affiliation(s)
- Aleksandra Ivanovic
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, 3010, Freiburgstrasse, Bern, Switzerland.
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Murtenstrasse 50, 3008, Bern, Switzerland.
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland.
| | - Jeffrey Tao Cheng
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Margaux Schmeltz
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Wilhelm Wimmer
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, 3010, Freiburgstrasse, Bern, Switzerland
- Department of Otorhinolaryngology, TUM School of Medicine, Klinikum Rechts Der Isar, Munich, Germany
| | | | - Aaron K Remenschneider
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
- Department of Otolaryngology Head and Neck Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Anne Bonnin
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Lukas Anschuetz
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, 3010, Freiburgstrasse, Bern, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, CHUV Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- The Sense Innovation and Research Center, Lausanne and Sion, Lausanne, Switzerland
| |
Collapse
|
2
|
Ivanovic A, Cheng JT, Schmeltz M, Schlepütz CM, Bonnin A, Anschuetz L. Dynamic X-ray Microtomography vs. Laser-Doppler Vibrometry: A Comparative Study. RESEARCH SQUARE 2024:rs.3.rs-4874430. [PMID: 39149507 PMCID: PMC11326387 DOI: 10.21203/rs.3.rs-4874430/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Purpose There are challenges in understanding the biomechanics of the human middle ear, and established methods for studying this system show significant limitations. In this study, we evaluate a novel dynamic imaging technique based on synchrotron X-ray microtomography designed to assess the biomechanical properties of the human middle ear by comparing it to laser-Doppler vibrometry (LDV). Methods We examined three fresh-frozen temporal bones (TB) using dynamic synchrotron-based X-ray microtomography for 256 Hz and 512 Hz, stimulated at 110 dB and 120 dB SPL. In addition, we performed measurements on these TBs using 1D LDV, a well-established method. Results The normalized displacement values (μm/Pa) at the umbo and the posterior crus of the stapes are consistent or within 5-10 dB differences between all LDV and dynamic microtomography measurements and previously reported literature references. In general, the overall behavior is similar between the two measurement techniques. Conclusion In conclusion, our results demonstrate the suitability of dynamic synchrotron-based X-ray microtomography in studying the middle ear's biomechanics. However, this study shows that better standardization regarding acoustic stimulation and measurement points is needed to better compare the two measurement techniques.
Collapse
Affiliation(s)
- Aleksandra Ivanovic
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Switzerland, 2Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland, Paul Scherrer Institut, Swiss Light Source, Villigen PSI, Switzerland
| | - Jeffrey Tao Cheng
- Department of Otolaryngology, Head and Neck Surgery, Mass. Eye and Ear, Boston Children Hospital, Harvard Medical School, Boston, 02114, MA, USA
| | - Margaux Schmeltz
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland
| | | | - Anne Bonnin
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Lukas Anschuetz
- Department of Otorhinolaryngology, Head and Neck Surgery, CHUV Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Ugarteburu M, Withnell RH, Cardoso L, Carriero A, Richter CP. Mammalian middle ear mechanics: A review. Front Bioeng Biotechnol 2022; 10:983510. [PMID: 36299283 PMCID: PMC9589510 DOI: 10.3389/fbioe.2022.983510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The middle ear is part of the ear in all terrestrial vertebrates. It provides an interface between two media, air and fluid. How does it work? In mammals, the middle ear is traditionally described as increasing gain due to Helmholtz's hydraulic analogy and the lever action of the malleus-incus complex: in effect, an impedance transformer. The conical shape of the eardrum and a frequency-dependent synovial joint function for the ossicles suggest a greater complexity of function than the traditional view. Here we review acoustico-mechanical measurements of middle ear function and the development of middle ear models based on these measurements. We observe that an impedance-matching mechanism (reducing reflection) rather than an impedance transformer (providing gain) best explains experimental findings. We conclude by considering some outstanding questions about middle ear function, recognizing that we are still learning how the middle ear works.
Collapse
Affiliation(s)
- Maialen Ugarteburu
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States
| | - Robert H. Withnell
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, United States
| | - Luis Cardoso
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States
| | - Alessandra Carriero
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States
| | - Claus-Peter Richter
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, United States
- Department of Communication Sciences and Disorders, Northwestern University, Chicago, IL, United States
- The Hugh Knowles Center, Northwestern University, Chicago, IL, United States
| |
Collapse
|
4
|
Wang J, Chawdhary G, Yang X, Morin F, Khalid-Raja M, Farrell J, MacDougall D, Chen F, Morris DP, Adamson RBA. Optical Clearing Agents for Optical Imaging Through Cartilage Tympanoplasties: A Preclinical Feasibility Study. Otol Neurotol 2022; 43:e467-e474. [PMID: 35239620 DOI: 10.1097/mao.0000000000003502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Optical clearing agents (OCAs) can render cartilage tympanoplasty grafts sufficiently transparent to permit visualization of middle ear structures in an operated ear using optical coherence tomography (OCT) imaging. METHODS Pieces of human tragal cartilage were treated with glycerol, a commonly used OCA. A reference reflector was imaged with OCT through the tympanoplasty as it cleared and the optical attenuation of the graft was measured. The reversibility of clearing and the dimensional changes associated with glycerol absorption were also measured. In a separate experiment, a human cadaveric temporal bone was prepared to simulate an ossiculoplasty surgery with cartilage replacement of the tympanic membrane. A partial ossicular replacement prosthesis (PORP) inserted in the ear was imaged with OCT through a 0.4mm cartilage graft optically cleared with glycerol. MAIN OUTCOME MEASURE The optical attenuation of 0.4mm cartilage grafts decreased at 2.3+/-1.1 dB/min following treatment with glycerol, reaching a total decrease in attenuation of 13.6+/-5.9 dB after 7 minutes. The optical and dimensional effects of glycerol absorption were reversable following saline washout. In the temporal bone preparation, treatment of a cartilage graft with glycerol resulted in a 13 dB increase in signal-to-noise ratio and a 13 dB increase in contrast for visualizing the PORP through the graft with OCT. CONCLUSIONS Optical clearing agents offer a potential pathway towards optical coherence tomography imaging of the middle ear in post-surgical ears with cartilage grafts.
Collapse
Affiliation(s)
- Junzhe Wang
- School of Biomedical Engineering, Dalhousie University
| | - Gaurav Chawdhary
- Department of Otolaryngology, Royal Hallamshire Hospital, Sheffield, U.K
| | - Xiaojie Yang
- School of Biomedical Engineering, Dalhousie University
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Francis Morin
- Family Medicine, McGill University, Montreal, Quebec
| | - Mamoona Khalid-Raja
- Stepping Hill Hospital, Stockport NHS Foundation Trust, Great Manchester, England, U.K
| | | | | | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - David P Morris
- Division of Otolaryngology Head & Neck Surgery, Department of Surgery
| | - Robert B A Adamson
- School of Biomedical Engineering, Dalhousie University
- Division of Otolaryngology Head & Neck Surgery, Department of Surgery
- Electrical and Computer Engineering Department, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
5
|
Predicting the Cochlear Dead Regions Using a Machine Learning-Based Approach with Oversampling Techniques. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111192. [PMID: 34833410 PMCID: PMC8625869 DOI: 10.3390/medicina57111192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/22/2022]
Abstract
Background and Objectives: Determining the presence or absence of cochlear dead regions (DRs) is essential in clinical practice. This study proposes a machine learning (ML)-based model that applies oversampling techniques for predicting DRs in patients. Materials and Methods: We used recursive partitioning and regression for classification tree (CT) and logistic regression (LR) as prediction models. To overcome the imbalanced nature of the dataset, oversampling techniques to duplicate examples in the minority class or to synthesize new examples from existing examples in the minority class were adopted, namely the synthetic minority oversampling technique (SMOTE). Results: The accuracy results of the 10-fold cross-validation of the LR and CT with the original data were 0.82 (±0.02) and 0.93 (±0.01), respectively. The accuracy results of the 10-fold cross-validation of the LR and CT with the oversampled data were 0.66 (±0.02) and 0.86 (±0.01), respectively. Conclusions: This study is the first to adopt the SMOTE method to assess the role of oversampling methods on audiological datasets and to develop an ML-based model. Considering that the SMOTE method did not improve the model’s performance, a more flexible model or more clinical features may be needed.
Collapse
|
6
|
Ali S, Gilani SBS, Shabbir J, Almulhim KS, Bugshan A, Farooq I. Optical coherence tomography's current clinical medical and dental applications: a review. F1000Res 2021; 10:310. [PMID: 33976868 PMCID: PMC8086034 DOI: 10.12688/f1000research.52031.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 11/20/2022] Open
Abstract
Optical coherence tomography (OCT) is a non-invasive investigative technique that is used to obtain high-resolution three-dimensional (3D) images of biological structures. This method is useful in diagnosing diseases of specific organs like the eye, where a direct biopsy cannot be conducted. Since its inception, significant advancements have been made in its technology. Apart from its initial application in ophthalmology for retinal imaging, substantial technological innovations in OCT brought by the research community have enabled its utilization beyond its original scope and allowed its application in many new clinical areas. This review presents a summary of the clinical applications of OCT in the field of medicine (ophthalmology, cardiology, otology, and dermatology) and dentistry (tissue imaging, detection of caries, analysis of dental polymer composite restorations, imaging of root canals, and diagnosis of oral cancer). In addition, potential advantages and disadvantages of OCT are also discussed.
Collapse
Affiliation(s)
- Saqib Ali
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Saqlain Bin Syed Gilani
- Department of Oral Biology, Islamic International Dental College, Riphah International University, Islamabad, Pakistan
| | - Juzer Shabbir
- Department of Operative Dentistry and Endodontics, Liaquat College of Medicine and Dentistry, Karachi, Pakistan
| | - Khalid S. Almulhim
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Amr Bugshan
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Imran Farooq
- Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada
| |
Collapse
|
7
|
Won J, Hong W, Khampang P, Spillman DR, Marshall S, Yan K, Porter RG, Novak MA, Kerschner JE, Boppart SA. Longitudinal optical coherence tomography to visualize the in vivo response of middle ear biofilms to antibiotic therapy. Sci Rep 2021; 11:5176. [PMID: 33664323 PMCID: PMC7933323 DOI: 10.1038/s41598-021-84543-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/15/2021] [Indexed: 01/31/2023] Open
Abstract
Studying the impact of antibiotic treatment on otitis media (OM), the leading cause of primary care office visits during childhood, is critical to develop appropriate treatment strategies. Tracking dynamic middle ear conditions during antibiotic treatment is not readily applicable in patients, due to the limited diagnostic techniques available to detect the smaller amount and variation of middle ear effusion (MEE) and middle ear bacterial biofilm, responsible for chronic and recurrent OM. To overcome these challenges, a handheld optical coherence tomography (OCT) system has been developed to monitor in vivo response of biofilms and MEEs in the OM-induced chinchilla model, the standard model for human OM. As a result, the formation of MEE as well as biofilm adherent to the tympanic membrane (TM) was longitudinally assessed as OM developed. Various types of MEEs and biofilms in the chinchilla model were identified, which showed comparable features as those in humans. Furthermore, the effect of antibiotics on the biofilm as well as the amount and type of MEEs was investigated with low-dose and high-dose treatment (ceftriaxone). The capability of OCT to non-invasively track and examine middle ear conditions is highly beneficial for therapeutic OM studies and will lead to improved management of OM in patients.
Collapse
Affiliation(s)
- Jungeun Won
- grid.35403.310000 0004 1936 9991Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Wenzhou Hong
- grid.30760.320000 0001 2111 8460Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI USA
| | - Pawjai Khampang
- grid.30760.320000 0001 2111 8460Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI USA
| | - Darold R. Spillman
- grid.35403.310000 0004 1936 9991Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Samuels Marshall
- grid.30760.320000 0001 2111 8460Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI USA
| | - Ke Yan
- grid.30760.320000 0001 2111 8460Section of Quantitative Health Sciences, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI USA
| | - Ryan G. Porter
- grid.413441.70000 0004 0476 3224Department of Otolaryngology, Carle Foundation Hospital, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL USA
| | - Michael A. Novak
- grid.413441.70000 0004 0476 3224Department of Otolaryngology, Carle Foundation Hospital, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL USA
| | - Joseph E. Kerschner
- grid.30760.320000 0001 2111 8460Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI USA ,grid.30760.320000 0001 2111 8460Division of Otolaryngology and Pediatric Otolaryngology, Medical College of Wisconsin, Milwaukee, WI USA
| | - Stephen A. Boppart
- grid.35403.310000 0004 1936 9991Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL USA ,grid.35403.310000 0004 1936 9991Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL USA
| |
Collapse
|
8
|
Choi SW, Kang J, Lee S, Oh SJ, Kim H, Kong SK. Mammalian Cochlear Hair Cell Imaging Using Optical Coherence Tomography (OCT): A Preliminary Study. J Int Adv Otol 2021; 17:46-51. [PMID: 33605221 DOI: 10.5152/iao.2020.8377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES This study aimed to investigate the feasibility of using optical coherence tomography (OCT) to provide information about cochlear microanatomy at a cellular level, specifically of cochlear hair cells in mammals. MATERIALS AND METHODS A total of 10 Sprague-Dawley rats were divided into 2 experimental groups for comparing the arrangement of normal and damaged hair cells. Postnatal day 3 Sprague-Dawley rats were used to test the swept-source OCT system, and the images recorded were compared with fluorescence microscope images. RESULTS Intracochlear structures (the inner hair cells, outer hair cells, and auditory nerve fibers) were clearly visualized at the individual cellular level. CONCLUSION These images reflect the ability of OCT to provide images of the inner hair cells, outer hair cells, and auditory nerve fibers (ex vivo). OCT is a promising technology, and these findings could be used to encourage research in the area of cochlear microstructure imaging in the future.
Collapse
Affiliation(s)
- Sung-Won Choi
- Department of Otorhinolaryngology and Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Jieun Kang
- Department of Otorhinolaryngology and Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Seokhwan Lee
- Department of Otorhinolaryngology and Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Se-Joon Oh
- Department of Otorhinolaryngology and Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Hongki Kim
- Koh Young Technology Inc., Geumcheon-gu, Seoul, Republic of Korea
| | - Soo-Keun Kong
- Department of Otorhinolaryngology and Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
9
|
Cho NH, Jang JH. Future Directions of Optical Coherence Tomography in Otology: A Morphological and Functional Approach. Clin Exp Otorhinolaryngol 2020; 13:85-86. [PMID: 32434305 PMCID: PMC7248606 DOI: 10.21053/ceo.2020.00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 01/18/2020] [Indexed: 11/22/2022] Open
Affiliation(s)
- Nam Hyun Cho
- Department of Otolaryngology and Head-Neck Surgery, Harvard Medical School, Boston, MA, USA.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
| | - Jeong Hun Jang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|