1
|
Tanaka S, Mifune Y, Inui A, Yamaura K, Furukawa T, Kato T, Kusunose M, Matsumoto T, Matsushita T, Kuroda R. Mitochondrial Dysfunction of the Subsynovial Connective Tissue in Patients With Carpal Tunnel Syndrome. J Orthop Res 2025; 43:1045-1053. [PMID: 40099548 DOI: 10.1002/jor.26064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/24/2025] [Accepted: 02/17/2025] [Indexed: 03/20/2025]
Abstract
In idiopathic carpal tunnel syndrome (CTS), fibrosis and thickening of the subsynovial connective tissue (SSCT) increase pressure within the carpal tunnel, resulting in median nerve entrapment. Mitochondrial dysfunction in tissues reportedly leads to senescent cell accumulation and various diseases through reduced adenosine triphosphate (ATP) and excessive reactive oxygen species (ROS) production; however, no reports have linked this to CTS. Therefore, this study aimed to evaluate mitochondrial function in SSCTs of patients with CTS. This study investigated SSCTs obtained during carpal tunnel release surgery in patients with CTS (CTS group) and those obtained during tendon transfer or tendon rupture surgery in patients without CTS (control group) from April 2021 to March 2023 at our hospital. Outcome measures included superoxide dismutase (SOD) activity, gene expression levels, immunofluorescence staining, ATP production assays, and transmission electron microscopy (TEM). p values were calculated using the Mann-Whitney U test. The CTS and control groups included 10 and 5 patients (mean age, 67.8 ± 9.57 and 65.4 ± 9.75 years), respectively. The CTS group exhibited decreased SOD activity (p = 0.026), increased gene expression of mitochondrial biosynthetic factors, and decreased mitochondrial ATP production (p = 0.027). The CTS group showed increased mitochondrial ROS production (p = 0.038) on immunofluorescence and larger mitochondrial area (p = 0.030) and fewer mitochondrial cristae (p = 0.045) on TEM. Multiple mitochondrial function assays suggested mitochondrial dysfunction of SSCTs in the CTS group. STATEMENT OF CLINICAL SIGNIFICANCE: This research provided important information on the histological changes in the subsynovial connective tissue within the carpal tunnel in carpal tunnel syndrome.
Collapse
Affiliation(s)
- Shuya Tanaka
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe-shi, Hyogo, Japan
| | - Yutaka Mifune
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe-shi, Hyogo, Japan
| | - Atsuyuki Inui
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe-shi, Hyogo, Japan
| | - Kohei Yamaura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe-shi, Hyogo, Japan
| | - Takahiro Furukawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe-shi, Hyogo, Japan
| | - Tatsuo Kato
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe-shi, Hyogo, Japan
| | - Masaya Kusunose
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe-shi, Hyogo, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe-shi, Hyogo, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe-shi, Hyogo, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kobe University, Kobe-shi, Hyogo, Japan
| |
Collapse
|
2
|
Xu Z, Hou W, Zhang T, Chen R, Skutella T. Exploring molecular and cellular signaling pathways: Unraveling the pathogenesis of tendinopathy. J Orthop Translat 2025; 51:298-311. [PMID: 40201708 PMCID: PMC11978293 DOI: 10.1016/j.jot.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/09/2025] [Accepted: 02/05/2025] [Indexed: 04/10/2025] Open
Abstract
Despite the long healing duration of tendon injuries, the outcomes of repairs are frequently suboptimal, resulting in persistent pain and reduced functionality. Current clinical approaches to tendinopathy are primarily symptomatic, encompassing nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroid injections, physical therapies, surgical interventions, loading programs, and pain management. Yet, these treatments have protracted timelines and their efficacy remains uncertain. This uncertainty stems largely from an incomplete understanding of tendinopathy's pathogenesis. Unraveling the mechanisms behind tendinopathy is essential for devising novel therapeutic strategies. In this context, this review systematic reviewed more recent cellular and molecular literature in tendinopathy, in order to summarize the up-to-date advancements including the structure and composition of healthy tendons, the pathophysiological changes in tendinopathy, the molecular pathways implicated in various forms of the condition, and current effective treatment methods. This review not only aims to offer insights but also to inspire further investigation into the mechanisms and clinical management of tendinopathy. The translational potential of this article A deficient understanding of the molecular mechanisms hampers the advancement of therapeutic strategies and drug development. Consequently, an in-depth examination of these molecular mechanisms is essential for comprehending the etiology of tendinopathy and for devising effective clinical management strategies.
Collapse
Affiliation(s)
- Zihan Xu
- Department of Neuroanatomy, Group for Regeneration and Reprogramming, Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - Wenjing Hou
- Department of Neuroanatomy, Group for Regeneration and Reprogramming, Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - Tao Zhang
- Department of Neuroanatomy, Group for Regeneration and Reprogramming, Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - Rui Chen
- Department of Reproductive Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Thomas Skutella
- Department of Neuroanatomy, Group for Regeneration and Reprogramming, Institute for Anatomy and Cell Biology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
3
|
Lun W, Wang H, Li M, Ma J, Ding Y, Zheng X, Cao X, Li Q. Fabrication of MnO 2-Modified Decellularized Tendon Membrane for Enhancing Tendon Repair. Adv Healthc Mater 2025; 14:e2402584. [PMID: 39491818 DOI: 10.1002/adhm.202402584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/11/2024] [Indexed: 11/05/2024]
Abstract
Repairing tendon/ligament injuries is a major challenge in sports medicine. It has been reported that tendon injury healing is hindered by massive production of reactive oxygen species (ROS). Manganese oxides nanoparticles are generally non-toxic, can scavenge ROS, promote tissue regeneration, and hold promise for sustainable nanotechnologies. However, the effective and safe integration of MnO2 nanoparticles on decellularized scaffold mediating tissue repair is still a great challenge. To address these issues, an in situ MnO2-modified decellularized scaffold is developed to enhance tendon regeneration through improving microenvironment. The decellularized fibrous membrane is designed and prepared using the central tendon of the porcine diaphragm. Then MnO2 nanozymes are in situ grown on the collagen fibers using tannic acid (TA) as cross-linking agent and reducing agent. The results showed that MnO2-modified scaffold eliminates excessive accumulation of ROS in cells, protects mitochondrial, and maintains the phenotype of tendon cells in an oxidative stress environment. Notably, it is found that the MnO2-modified scaffold exhibits good biocompatibility and is able to promote the tendon healing in the rat patellar tendon defect model. Altogether, this study confirmed that this nanozyme-functionalized decellularized extracellular matrix effectively enhanced tendon repair by scavenging ROS, which provides new strategies for enhancing tendon regeneration.
Collapse
Affiliation(s)
- Wanqing Lun
- School of Medicine, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, P. R. China
| | - Huajun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, P. R. China
- The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, 510630, P. R. China
| | - Mengyuan Li
- Division of Joint Osteopathy and Traumatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P. R. China
| | - Jiuzhi Ma
- School of Medicine, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, P. R. China
| | - Yilin Ding
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, P. R. China
- Department of Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, P. R. China
| | - Xiaofei Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, P. R. China
- The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, 510630, P. R. China
| | - Xiaodong Cao
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, P. R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Qingtao Li
- School of Medicine, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, P. R. China
| |
Collapse
|
4
|
Cheng L, Zheng Q, Qiu K, Elmer Ker DF, Chen X, Yin Z. Mitochondrial destabilization in tendinopathy and potential therapeutic strategies. J Orthop Translat 2024; 49:49-61. [PMID: 39430132 PMCID: PMC11488423 DOI: 10.1016/j.jot.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 10/22/2024] Open
Abstract
Tendinopathy is a prevalent aging-related disorder characterized by pain, swelling, and impaired function, often resulting from micro-scarring and degeneration caused by overuse or trauma. Current interventions for tendinopathy have limited efficacy, highlighting the need for innovative therapies. Mitochondria play an underappreciated and yet crucial role in tenocytes function, including energy production, redox homeostasis, autophagy, and calcium regulation. Abnormalities in mitochondrial function may lead to cellular senescence. Within this context, this review provides an overview of the physiological functions of mitochondria in tendons and presents current insights into mitochondrial dysfunction in tendinopathy. It also proposes potential therapeutic strategies that focus on targeting mitochondrial health in tenocytes. These strategies include: (1) utilizing reactive oxygen species (ROS) scavengers to mitigate the detrimental effects of aberrant mitochondria, (2) employing mitochondria-protecting agents to reduce the production of dysfunctional mitochondria, and (3) supplementing with exogenous normal mitochondria. In conclusion, mitochondria-targeted therapies hold great promise for restoring mitochondrial function and improving outcomes in patients with tendinopathy. The translational potential of this article: Tendinopathy is challenging to treat effectively due to its poorly understood pathogenesis. This review thoroughly analyzes the role of mitochondria in tenocytes and proposes potential strategies for the mitochondrial treatment of tendinopathy. These findings establish a theoretical basis for future research and the clinical translation of mitochondrial therapy for tendinopathy.
Collapse
Affiliation(s)
- Linxiang Cheng
- Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Qiangqiang Zheng
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, And Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Kaijie Qiu
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, And Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Xiao Chen
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, And Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Zi Yin
- Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| |
Collapse
|
5
|
Zhang X, Li M, Mao X, Yao Z, Zhu W, Yuan Z, Gao X, Pan S, Zhang Y, Zhao J, Mao H. Small Intestinal Submucosa Hydrogel Loaded With Gastrodin for the Repair of Achilles Tendinopathy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401886. [PMID: 39185812 DOI: 10.1002/smll.202401886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Achilles tendinopathy (AT) is an injury caused by overuse of the Achilles tendon or sudden force on the Achilles tendon, with a considerable inflammatory infiltrate. As Achilles tendinopathy progresses, inflammation and inflammatory factors affect the remodeling of the extracellular matrix (ECM) of the tendon. Gastrodin(Gas), the main active ingredient of Astrodia has anti-inflammatory, antioxidant, and anti-apoptotic properties. The small intestinal submucosa (SIS) is a naturally decellularized extracellular matrix(dECM)material and has a high content of growth factors as well as good biocompatibility. However, the reparative effects of SIS and Gas on Achilles tendinopathy and their underlying mechanisms remain unknown. Here, it is found that SIS hydrogel loaded with gastrodin restored the mechanical strength of the Achilles tendon, facilitated ECM remodeling, and restored ordered collagen arrangement by promoting the translocation of protein synthesis. It also decreases the expression of inflammatory factors and reduces the infiltration of inflammatory cells by inhibiting the NF-κB signaling pathway. It is believed that through further research, Gas + SIS may be used in the future for the treatment of Achilles tendinopathy and other Achilles tendon injury disorders.
Collapse
Affiliation(s)
- Xiqian Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, P. R. China
| | - Mei Li
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, P. R. China
| | - Xufeng Mao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, P. R. China
| | - Zheyu Yao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, P. R. China
| | - Weilai Zhu
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Zheyang Yuan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, P. R. China
| | - Xiang Gao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, P. R. China
| | - Senghao Pan
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Yijun Zhang
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Jiyuan Zhao
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315010, P. R. China
| |
Collapse
|
6
|
Hasan SS. Editorial Commentary: Magnetic Resonance Imaging Reveals Rotator Cuff Tear Size, Retraction, Length, and Geometry; Muscle Volume and Degeneration; and Tendon Quality. Arthroscopy 2024:S0749-8063(24)00758-8. [PMID: 39341260 DOI: 10.1016/j.arthro.2024.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Magnetic resonance imaging (MRI) of the shoulder is commonly used for evaluating muscle bulk and fatty degeneration, as well as tendon tear size, geometry, retraction, and length. However, MRI can also be used to evaluate tendon quality. Increased rotator cuff tendon signal on T2-weighted fat-suppressed MRI appears to be a marker of tendon degeneration and potentially of impaired healing potential. Tendon signal intensity merits closer attention and may be especially relevant when selecting chronic degenerative tears for repair in patients with other risk factors for nonhealing.
Collapse
|
7
|
Marzagalli M, Battaglia S, Raimondi M, Fontana F, Cozzi M, Ranieri FR, Sacchi R, Curti V, Limonta P. Anti-Inflammatory and Antioxidant Properties of a New Mixture of Vitamin C, Collagen Peptides, Resveratrol, and Astaxanthin in Tenocytes: Molecular Basis for Future Applications in Tendinopathies. Mediators Inflamm 2024; 2024:5273198. [PMID: 39108992 PMCID: PMC11303056 DOI: 10.1155/2024/5273198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 04/09/2024] [Accepted: 07/12/2024] [Indexed: 09/17/2024] Open
Abstract
Tendinopathy is one of the most frequent musculoskeletal disorders characterized by sustained tissue inflammation and oxidative stress, accompanied by extracellular matrix remodeling. Patients suffering from this pathology frequently experience pain, swelling, stiffness, and muscle weakness. Current pharmacological interventions are based on nonsteroidal anti-inflammatory drugs; however, the effectiveness of these strategies remains ambiguous. Accumulating evidence supports that oral supplementation of natural compounds can provide preventive, and possibly curative, effects. Vitamin C (Vit C), collagen peptides (Coll), resveratrol (Res), and astaxanthin (Asx) were reported to be endowed with potential beneficial effects based on their anti-inflammatory and antioxidant activities. Here, we analyzed the efficacy of a novel combination of these compounds (Mix) in counteracting proinflammatory (IL-1β) and prooxidant (H2O2) stimuli in human tenocytes. We demonstrated that Mix significantly impairs IL-6-induced IL-1β secretion, NF-κB nuclear translocation, and MMP-2 production; notably, a synergistic effect of Mix over the single compounds could be observed. Moreover, Mix was able to significantly counteract H2O2-triggered ROS production. Together, these results point out that Mix, a novel combination of Vit C, Coll, Resv, and Asx, significantly impairs proinflammatory and prooxidant stimuli in tenocytes, mechanisms that contribute to the onset of tendinopathies.
Collapse
Affiliation(s)
- Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”University of Milano, Milano 20133, Italy
| | | | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”University of Milano, Milano 20133, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”University of Milano, Milano 20133, Italy
| | - Marco Cozzi
- R&D Department Kolinpharma S.p.A., Lainate 20045, Italy
| | | | - Roberto Sacchi
- Department of Earth and Environmental SciencesUniversity of Pavia, Pavia 27100, Italy
| | - Valeria Curti
- R&D Department Kolinpharma S.p.A., Lainate 20045, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”University of Milano, Milano 20133, Italy
| |
Collapse
|
8
|
Wu K, Shieh JS, Qin L, Guo JJ. Mitochondrial mechanisms in the pathogenesis of chronic inflammatory musculoskeletal disorders. Cell Biosci 2024; 14:76. [PMID: 38849951 PMCID: PMC11162051 DOI: 10.1186/s13578-024-01259-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Chronic inflammatory musculoskeletal disorders characterized by prolonged muscle inflammation, resulting in enduring pain and diminished functionality, pose significant challenges for the patients. Emerging scientific evidence points to mitochondrial malfunction as a pivotal factor contributing to these ailments. Mitochondria play a critical role in powering skeletal muscle activity, but in the context of persistent inflammation, disruptions in their quantity, configuration, and performance have been well-documented. Various disturbances, encompassing alterations in mitochondrial dynamics (such as fission and fusion), calcium regulation, oxidative stress, biogenesis, and the process of mitophagy, are believed to play a central role in the progression of these disorders. Additionally, unfolded protein responses and the accumulation of fatty acids within muscle cells may adversely affect the internal milieu, impairing the equilibrium of mitochondrial functioning. The structural discrepancies between different mitochondrial subsets namely, intramyofibrillar and subsarcolemmal mitochondria likely impact their metabolic capabilities and susceptibility to inflammatory influences. The release of signals from damaged mitochondria is known to incite inflammatory responses. Intriguingly, migrasomes and extracellular vesicles serve as vehicles for intercellular transfer of mitochondria, aiding in the removal of impaired mitochondria and regulation of inflammation. Viral infections have been implicated in inducing stress on mitochondria. Prolonged dysfunction of these vital organelles sustains oxidative harm, metabolic irregularities, and heightened cytokine release, impeding the body's ability to repair tissues. This review provides a comprehensive analysis of advancements in understanding changes in the intracellular environment, mitochondrial architecture and distribution, biogenesis, dynamics, autophagy, oxidative stress, cytokines associated with mitochondria, vesicular structures, and associated membranes in the context of chronic inflammatory musculoskeletal disorders. Strategies targeting key elements regulating mitochondrial quality exhibit promise in the restoration of mitochondrial function, alleviation of inflammation, and enhancement of overall outcomes.
Collapse
Affiliation(s)
- Kailun Wu
- Department of Orthopedics, The Fourth Affiliated Hospital of Soochow University/Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, People's Republic of China
- Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Ju-Sheng Shieh
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 11490, Taiwan
| | - Ling Qin
- Musculoskeletal Research Laboratory of the Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Jiong Jiong Guo
- Department of Orthopedics and Sports Medicine, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China.
- MOE China-Europe Sports Medicine Belt and Road Joint Laboratory, Soochow University, Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Eliasberg CD, Trinh PMP, Rodeo SA. Translational Research on Orthobiologics in the Treatment of Rotator Cuff Disease: From the Laboratory to the Operating Room. Sports Med Arthrosc Rev 2024; 32:33-37. [PMID: 38695501 DOI: 10.1097/jsa.0000000000000395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Rotator cuff disease is one of the most common human tendinopathies and can lead to significant shoulder dysfunction. Despite efforts to improve symptoms in patients with rotator cuff tears and healing rates after rotator cuff repair, high rates of failed healing and persistent shoulder morbidity exist. Increasing interest has been placed on the utilization of orthobiologics-scaffolds, cell-based augmentation, platelet right plasma (platelet-rich plasma), and small molecule-based strategies-in the management of rotator cuff disease and the augmentation of rotator cuff repairs. This is a complex topic that involves novel treatment strategies, including patches/scaffolds, small molecule-based, cellular-based, and tissue-derived augmentation techniques. Ultimately, translational research, with a particular focus on preclinical models, has allowed us to gain some insights into the utility of orthobiologics in the treatment of rotator cuff disease and will continue to be critical to our further understanding of the underlying cellular mechanisms moving forward.
Collapse
Affiliation(s)
- Claire D Eliasberg
- HSS Sports Medicine Institute, Hospital for Special Surgery
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery Research Institute
| | - Paula M P Trinh
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery Research Institute
- Weill Cornell Medical College, New York, NY
| | - Scott A Rodeo
- HSS Sports Medicine Institute, Hospital for Special Surgery
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery Research Institute
| |
Collapse
|
10
|
Shahid H, Morya VK, Oh JU, Kim JH, Noh KC. Hypoxia-Inducible Factor and Oxidative Stress in Tendon Degeneration: A Molecular Perspective. Antioxidants (Basel) 2024; 13:86. [PMID: 38247510 PMCID: PMC10812560 DOI: 10.3390/antiox13010086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Tendinopathy is a debilitating condition marked by degenerative changes in the tendons. Its complex pathophysiology involves intrinsic, extrinsic, and physiological factors. While its intrinsic and extrinsic factors have been extensively studied, the role of physiological factors, such as hypoxia and oxidative stress, remains largely unexplored. This review article delves into the contribution of hypoxia-associated genes and oxidative-stress-related factors to tendon degeneration, offering insights into potential therapeutic strategies. The unique aspect of this study lies in its pathway-based evidence, which sheds light on how these factors can be targeted to enhance overall tendon health.
Collapse
Affiliation(s)
- Hamzah Shahid
- Dongtan Sacred Heart Hospital, Hallym University, Hwaseong-si 18450, Gyeonggi-do, Republic of Korea (J.-H.K.)
- School of Medicine, Hallym University, Chuncheon City 24252, Gangwon-do, Republic of Korea
| | - Vivek Kumar Morya
- Dongtan Sacred Heart Hospital, Hallym University, Hwaseong-si 18450, Gyeonggi-do, Republic of Korea (J.-H.K.)
| | - Ji-Ung Oh
- Dongtan Sacred Heart Hospital, Hallym University, Hwaseong-si 18450, Gyeonggi-do, Republic of Korea (J.-H.K.)
| | - Jae-Hyung Kim
- Dongtan Sacred Heart Hospital, Hallym University, Hwaseong-si 18450, Gyeonggi-do, Republic of Korea (J.-H.K.)
| | - Kyu-Cheol Noh
- Dongtan Sacred Heart Hospital, Hallym University, Hwaseong-si 18450, Gyeonggi-do, Republic of Korea (J.-H.K.)
| |
Collapse
|
11
|
Liu Z, Zhou H, Li P, Wang Z, Tu T, Ezzi SHA, Kota VG, Hasan Abdulla MHA, Alhaskawi A, Dong Y, Huang Y, Dong M, Su X, Lu H. Fibroblast Activation Protein-Targeted PET/CT With Al 18F-NODA-FAPI-04 for In Vivo Imaging of Tendon Healing in Rat Achilles Tendon Injury Models. Am J Sports Med 2023; 51:3790-3801. [PMID: 37975494 DOI: 10.1177/03635465231208843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
BACKGROUND Fibroblast activation protein (FAP) has shown high expression in inflammatory responses and fibrosis. HYPOTHESIS We speculated that FAP could serve as a diagnostic and monitoring target in the tendon healing process. STUDY DESIGN Controlled laboratory study. METHODS A total of 72 Sprague-Dawley rats were randomly divided into a tendon crush group and a half-partial tendon laceration group. Four rats in each group were injected with radiotracers weekly for 4 weeks after surgery, with aluminum fluoride-labeled 1,4,7-triazacyclononane-N,N',N″-triacetic acid-conjugated FAP inhibitor (Al18F-NODA-FAPI-04) administered on the first day of each week and 18F-fludeoxyglucose (18F-FDG) on the next day. Small animal positron emission tomography (PET) imaging was performed, and tendon tissue was collected for pathology and quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis each week after surgery. RESULTS One week after surgery, both radiotracers showed signal concentration at the lesion site, which was the highest radioactive uptake observed during 4 weeks postoperatively, consistent with the severity of the lesion. Consistent trends were observed for inflammatory cytokines during qRT-PCR analysis. Additionally, Al18F-NODA-FAPI-04 PET exhibited a more precise lesion pattern, attributed to its high specificity for naive fibroblasts when referring to histological findings. Over time, the uptake of both radiotracers at the injury site gradually decreased, with 18F-FDG experiencing a more rapid decrease than Al18F-NODA-FAPI-04. In the fourth week after surgery, the maximum standardized uptake values of Al18F-NODA-FAPI-04 in the injured lesion almost reverted to the baseline levels, indicating a substantial decrease in naive fibroblasts and inflammatory cells and a reduction in inflammation and fibrosis, especially compared with the first week. Corresponding trends were also revealed in pathological and qRT-PCR results. CONCLUSION Our findings suggest that inflammation is a prominent feature during the early stage of tendon injury. Al18F-NODA-FAPI-04 PET allows accurate localization and provides detailed morphological imaging, enabling continuous monitoring of the healing progress and assessment of injury severity.
Collapse
Affiliation(s)
- Zhenfeng Liu
- PET Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, MMed Province, P.R. China
- Investigation performed at The First Affiliated Hospital, College of Medicine, Zhejiang University, HangZhou, ZheJiang Province, China PR
| | - Haiying Zhou
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
- Investigation performed at The First Affiliated Hospital, College of Medicine, Zhejiang University, HangZhou, ZheJiang Province, China PR
| | - Pengfei Li
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
- Investigation performed at The First Affiliated Hospital, College of Medicine, Zhejiang University, HangZhou, ZheJiang Province, China PR
| | - Zewei Wang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P.R. China
- Investigation performed at The First Affiliated Hospital, College of Medicine, Zhejiang University, HangZhou, ZheJiang Province, China PR
| | - Tian Tu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
- Investigation performed at The First Affiliated Hospital, College of Medicine, Zhejiang University, HangZhou, ZheJiang Province, China PR
| | - Sohaib Hasan Abdullah Ezzi
- Department of Orthopaedics of the 3rd Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
- Investigation performed at The First Affiliated Hospital, College of Medicine, Zhejiang University, HangZhou, ZheJiang Province, China PR
| | - Vishnu Goutham Kota
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P.R. China
- Investigation performed at The First Affiliated Hospital, College of Medicine, Zhejiang University, HangZhou, ZheJiang Province, China PR
| | - Mohamed Hasan Abdulla Hasan Abdulla
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P.R. China
- Investigation performed at The First Affiliated Hospital, College of Medicine, Zhejiang University, HangZhou, ZheJiang Province, China PR
| | - Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
- Investigation performed at The First Affiliated Hospital, College of Medicine, Zhejiang University, HangZhou, ZheJiang Province, China PR
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
- Investigation performed at The First Affiliated Hospital, College of Medicine, Zhejiang University, HangZhou, ZheJiang Province, China PR
| | - Yuqiao Huang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
- Investigation performed at The First Affiliated Hospital, College of Medicine, Zhejiang University, HangZhou, ZheJiang Province, China PR
| | - Mengjie Dong
- PET Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
- Investigation performed at The First Affiliated Hospital, College of Medicine, Zhejiang University, HangZhou, ZheJiang Province, China PR
| | - Xinhui Su
- PET Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
- Investigation performed at The First Affiliated Hospital, College of Medicine, Zhejiang University, HangZhou, ZheJiang Province, China PR
| | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
- Investigation performed at The First Affiliated Hospital, College of Medicine, Zhejiang University, HangZhou, ZheJiang Province, China PR
| |
Collapse
|
12
|
Zhang Y, Lu S, Yu G, Wang C, Zhao Q. NAMPT-Improved Mitochondrial Function Alleviates Degenerative Rotator Cuff Tendinopathy in Aged Mice. J Bone Joint Surg Am 2023; 105:1502-1511. [PMID: 37616388 DOI: 10.2106/jbjs.22.00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
BACKGROUND Age-related rotator cuff tendinopathy (RCT) is associated with increased rotator cuff tear and postoperative retear rates. This study aimed to determine whether nicotinamide phosphoribosyltransferase (NAMPT) can alleviate degenerative RCT and prevent postoperative retears by reversing mitochondrial dysfunction in aged mice. METHODS We assigned 32 young (4 months) and 64 aged (19 to 20 months) male wild-type C57BL/6 mice to young, aged, and aged NAMPT-treated (ANAMPT) groups (n = 32 each). Mice in the ANAMPT group underwent subacromial injection with NAMPT-loaded fibrin gel, whereas the other 2 groups were injected with fibrin gel alone. Histological staining and each of the biomechanical and mitochondrial function tests were performed using 8 samples each. RESULTS Histological staining in the aged group revealed decreased cellularity, disrupted fiber architecture, and reduced type-I collagen content inside tendon tissues proximal to the enthesis, demonstrating the spontaneous development of age-related degenerative RCT. Compared with the young group, the maximum tendon-to-bone failure load (4.22 ± 0.81 versus 5.52 ± 0.81 N, p = 0.0106) and maximum suture cut-through force (0.83 ± 0.08 versus 1.07 ± 0.10 N, p = 0.0006) of degenerated tendon tissues in the aged group were significantly lower. Significantly reduced nicotinamide adenine dinucleotide (NAD + ) levels, adenosine triphosphate (ATP) production, and citrate synthase activity indicated that mitochondrial dysfunction was closely related to the development of the degenerative RCT. Furthermore, NAMPT-improved mitochondrial function alleviated age-induced degenerative histological changes and increased the maximum failure load (5.32 ± 0.68 N, p = 0.0375) and maximum suture cut-through force (0.99 ± 0.13 N, p = 0.0285). CONCLUSIONS Spontaneously developed degenerative RCT in aged mice mimicked the clinical situation in elderly patients. NAMPT-improved mitochondrial function could alleviate age-induced degenerative RCT and prevent postoperative suture cut-through of tendons with degenerative RCT. CLINICAL RELEVANCE This study confirmed the spontaneous development of degenerative RCT in aged mice, which will facilitate future studies of this condition. The results also suggest that NAMPT offers a novel therapeutic approach for treating age-related degenerative RCT.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Shuai Lu
- Department of Orthopedics, Affiliated Provincial Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Gang Yu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Chongyang Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qichun Zhao
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
- Department of Orthopedics, Affiliated Provincial Hospital of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
13
|
Luo J, Wang Z, Tang C, Yin Z, Huang J, Ruan D, Fei Y, Wang C, Mo X, Li J, Zhang J, Fang C, Li J, Chen X, Shen W. Animal model for tendinopathy. J Orthop Translat 2023; 42:43-56. [PMID: 37637777 PMCID: PMC10450357 DOI: 10.1016/j.jot.2023.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 08/29/2023] Open
Abstract
Background Tendinopathy is a common motor system disease that leads to pain and reduced function. Despite its prevalence, our mechanistic understanding is incomplete, leading to limited efficacy of treatment options. Animal models contribute significantly to our understanding of tendinopathy and some therapeutic options. However, the inadequacies of animal models are also evident, largely due to differences in anatomical structure and the complexity of human tendinopathy. Different animal models reproduce different aspects of human tendinopathy and are therefore suitable for different scenarios. This review aims to summarize the existing animal models of tendinopathy and to determine the situations in which each model is appropriate for use, including exploring disease mechanisms and evaluating therapeutic effects. Methods We reviewed relevant literature in the PubMed database from January 2000 to December 2022 using the specific terms ((tendinopathy) OR (tendinitis)) AND (model) AND ((mice) OR (rat) OR (rabbit) OR (lapin) OR (dog) OR (canine) OR (sheep) OR (goat) OR (horse) OR (equine) OR (pig) OR (swine) OR (primate)). This review summarized different methods for establishing animal models of tendinopathy and classified them according to the pathogenesis they simulate. We then discussed the advantages and disadvantages of each model, and based on this, identified the situations in which each model was suitable for application. Results For studies that aim to study the pathophysiology of tendinopathy, naturally occurring models, treadmill models, subacromial impingement models and metabolic models are ideal. They are closest to the natural process of tendinopathy in humans. For studies that aim to evaluate the efficacy of possible treatments, the selection should be made according to the pathogenesis simulated by the modeling method. Existing tendinopathy models can be classified into six types according to the pathogenesis they simulate: extracellular matrix synthesis-decomposition imbalance, inflammation, oxidative stress, metabolic disorder, traumatism and mechanical load. Conclusions The critical factor affecting the translational value of research results is whether the selected model is matched with the research purpose. There is no single optimal model for inducing tendinopathy, and researchers must select the model that is most appropriate for the study they are conducting. The translational potential of this article The critical factor affecting the translational value of research results is whether the animal model used is compatible with the research purpose. This paper provides a rationale and practical guide for the establishment and selection of animal models of tendinopathy, which is helpful to improve the clinical transformation ability of existing models and develop new models.
Collapse
Affiliation(s)
- Junchao Luo
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Zetao Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Zi Yin
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jiayun Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yang Fei
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Canlong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xianan Mo
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jiajin Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
| | - Jun Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Department of Orthopedics, Longquan People's Hospital, Zhejiang, 323799, China
| | - Cailian Fang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
| | - Jianyou Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Zhejiang University Huzhou Hospital, 313000, Huzhou, Zhejiang, China
| | - Xiao Chen
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Tognoloni A, Bartolini D, Pepe M, Di Meo A, Porcellato I, Guidoni K, Galli F, Chiaradia E. Platelets Rich Plasma Increases Antioxidant Defenses of Tenocytes via Nrf2 Signal Pathway. Int J Mol Sci 2023; 24:13299. [PMID: 37686103 PMCID: PMC10488198 DOI: 10.3390/ijms241713299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Tendinopathies are common disabling conditions in equine and human athletes. The etiology is still unclear, although reactive oxygen species (ROS) and oxidative stress (OS) seem to play a crucial role. In addition, OS has been implicated in the failure of tendon lesion repair. Platelet-rich plasma (PRP) is rich in growth factors that promote tissue regeneration. This is a promising therapeutic approach in tendon injury. Moreover, growing evidence has been attributed to PRP antioxidant effects that can sustain tissue healing. In this study, the potential antioxidant effects of PRP in tenocytes exposed to oxidative stress were investigated. The results demonstrated that PRP reduces protein and lipid oxidative damage and protects tenocytes from OS-induced cell death. The results also showed that PRP was able to increase nuclear levels of redox-dependent transcription factor Nrf2 and to induce some antioxidant/phase II detoxifying enzymes (superoxide dismutase 2, catalase, heme oxygenase 1, NAD(P)H oxidoreductase quinone-1, glutamate cysteine ligase catalytic subunit and glutathione, S-transferase). Moreover, PRP also increased the enzymatic activity of catalase and glutathione S-transferase. In conclusion, this study suggests that PRP could activate various cellular signaling pathways, including the Nrf2 pathway, for the restoration of tenocyte homeostasis and to promote tendon regeneration and repair following tendon injuries.
Collapse
Affiliation(s)
- Alessia Tognoloni
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (A.T.); (M.P.); (A.D.M.); (I.P.); (K.G.)
| | - Desiree Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, 06122 Perugia, Italy; (D.B.); (F.G.)
| | - Marco Pepe
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (A.T.); (M.P.); (A.D.M.); (I.P.); (K.G.)
| | - Antonio Di Meo
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (A.T.); (M.P.); (A.D.M.); (I.P.); (K.G.)
| | - Ilaria Porcellato
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (A.T.); (M.P.); (A.D.M.); (I.P.); (K.G.)
| | - Kubra Guidoni
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (A.T.); (M.P.); (A.D.M.); (I.P.); (K.G.)
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, 06122 Perugia, Italy; (D.B.); (F.G.)
| | - Elisabetta Chiaradia
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (A.T.); (M.P.); (A.D.M.); (I.P.); (K.G.)
| |
Collapse
|
15
|
Wei B, Ji M, Lin Y, Wang S, Liu Y, Geng R, Hu X, Xu L, Li Z, Zhang W, Lu J. Mitochondrial transfer from bone mesenchymal stem cells protects against tendinopathy both in vitro and in vivo. Stem Cell Res Ther 2023; 14:104. [PMID: 37101277 PMCID: PMC10134653 DOI: 10.1186/s13287-023-03329-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Although mesenchymal stem cells (MSCs) have been effective in tendinopathy, the mechanisms by which MSCs promote tendon healing have not been fully elucidated. In this study, we tested the hypothesis that MSCs transfer mitochondria to injured tenocytes in vitro and in vivo to protect against Achilles tendinopathy (AT). METHODS Bone marrow MSCs and H2O2-injured tenocytes were co-cultured, and mitochondrial transfer was visualized by MitoTracker dye staining. Mitochondrial function, including mitochondrial membrane potential, oxygen consumption rate, and adenosine triphosphate content, was quantified in sorted tenocytes. Tenocyte proliferation, apoptosis, oxidative stress, and inflammation were analyzed. Furthermore, a collagenase type I-induced rat AT model was used to detect mitochondrial transfer in tissues and evaluate Achilles tendon healing. RESULTS MSCs successfully donated healthy mitochondria to in vitro and in vivo damaged tenocytes. Interestingly, mitochondrial transfer was almost completely blocked by co-treatment with cytochalasin B. Transfer of MSC-derived mitochondria decreased apoptosis, promoted proliferation, and restored mitochondrial function in H2O2-induced tenocytes. A decrease in reactive oxygen species and pro-inflammatory cytokine levels (interleukin-6 and -1β) was observed. In vivo, mitochondrial transfer from MSCs improved the expression of tendon-specific markers (scleraxis, tenascin C, and tenomodulin) and decreased the infiltration of inflammatory cells into the tendon. In addition, the fibers of the tendon tissue were neatly arranged and the structure of the tendon was remodeled. Inhibition of mitochondrial transfer by cytochalasin B abrogated the therapeutic efficacy of MSCs in tenocytes and tendon tissues. CONCLUSIONS MSCs rescued distressed tenocytes from apoptosis by transferring mitochondria. This provides evidence that mitochondrial transfer is one mechanism by which MSCs exert their therapeutic effects on damaged tenocytes.
Collapse
Affiliation(s)
- Bing Wei
- School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Gulou District, Jiangsu Province, 210009, Nanjing, People's Republic of China
- Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Mingliang Ji
- School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Gulou District, Jiangsu Province, 210009, Nanjing, People's Republic of China
- Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Yucheng Lin
- School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Gulou District, Jiangsu Province, 210009, Nanjing, People's Republic of China
- Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Shanzheng Wang
- School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Gulou District, Jiangsu Province, 210009, Nanjing, People's Republic of China
- Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Yuxi Liu
- School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Gulou District, Jiangsu Province, 210009, Nanjing, People's Republic of China
- Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Rui Geng
- School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Gulou District, Jiangsu Province, 210009, Nanjing, People's Republic of China
- Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Xinyue Hu
- School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Gulou District, Jiangsu Province, 210009, Nanjing, People's Republic of China
- Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Li Xu
- School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Gulou District, Jiangsu Province, 210009, Nanjing, People's Republic of China
- Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Zhuang Li
- School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Gulou District, Jiangsu Province, 210009, Nanjing, People's Republic of China
- Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Weituo Zhang
- School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Gulou District, Jiangsu Province, 210009, Nanjing, People's Republic of China
- Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Jun Lu
- School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Gulou District, Jiangsu Province, 210009, Nanjing, People's Republic of China.
- Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, Southeast University, Nanjing, 210009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
16
|
Patel SH, Carroll CC. Impact of elevated serum advanced glycation end products and exercise on intact and injured murine tendons. Connect Tissue Res 2023; 64:161-174. [PMID: 36282002 PMCID: PMC9992287 DOI: 10.1080/03008207.2022.2135508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/09/2022] [Indexed: 02/03/2023]
Abstract
OVERVIEW Delayed tendon healing is a significant clinical challenge for those with diabetes. We explored the role of advanced glycation end-products (AGEs), a protein modification present at elevated levels in serum of individuals with diabetes, on injured and intact tendons using a mouse model. Cell proliferation following tissue injury is a vital component of healing. Based on our previous work demonstrating that AGEs limit cell proliferation, we proposed that AGEs are responsible for the delayed healing process commonly observed in diabetic patients. Further, in pursuit of interventional strategies, we suggested that moderate treadmill exercise may support a healing environment in the presence of AGEs as exercise has been shown to stimulate cell proliferation in tendon tissue. MATERIALS AND METHODS Mice began receiving daily intraperitoneal injections of bovine serum albumin (BSA)-Control or AGE-BSA injections (200μg/ml) at 16-weeks of age. A tendon injury was created in the central third of both patellar tendons. Animals assigned to an exercise group began a moderate treadmill protocol one week following injury. The intact Achilles tendon and soleus muscle were also evaluated to assess the effect of BSA and AGE-BSA on un-injured muscle and tendon. RESULTS We demonstrate that our injection dosing and schedule lead to an increase in serum AGEs. Our findings imply that AGEs indeed modulate gene expression following a patellar tendon injury and have modest effects on gene expression in intact muscle and tendon. CONCLUSIONS While additional biomechanical analysis is warranted, these data suggest that elevated serum AGEs in persons with diabetes may impact tendon health.
Collapse
Affiliation(s)
- Shivam H. Patel
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN
| | - Chad C. Carroll
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN
| |
Collapse
|
17
|
Zhang X, Bowen E, Zhang M, Szeto HH, Deng XH, Rodeo SA. SS-31 as a Mitochondrial Protectant in the Treatment of Tendinopathy: Evaluation in a Murine Supraspinatus Tendinopathy Model. J Bone Joint Surg Am 2022; 104:1886-1894. [PMID: 35984013 DOI: 10.2106/jbjs.21.01449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Prior studies have demonstrated mitochondrial dysfunction in tendinopathy. The objective of this investigation was to explore the potential of SS-31 (elamipretide), a mitochondrial protectant, to improve mitochondrial function and promote tendon healing in a murine supraspinatus tendinopathy model. METHODS One hundred and twenty-six mice (252 limbs) were divided into 6 groups (42 limbs/group) that received (I) 4 weeks of impingement; (II) 8 weeks of impingement; (III) 8 weeks of impingement including 4 weeks of SS-31 treatment (5 mg/kg/d) starting after 4 weeks of impingement; (IV) 4 weeks of impingement ending with clip removal, followed by harvesting 4 weeks later; and (V) 4 weeks of impingement ending with clip removal, followed by 4 weeks of SS-31 treatment and harvesting; and a control group. Specimens were prepared for biomechanical testing, histological analysis, transmission electron microscopy, measurement of superoxidative dismutase (SOD) activity, and measurement of gene expression. RESULTS Failure force decreased after impingement, compared with the intact tendon, and the decrease was partially reversed after clip removal, SS-31 treatment, and the 2 treatments combined. A similar pattern was observed for stiffness. Histological analysis demonstrated higher modified Bonar scores in the impingement groups; however, the changes in tendon morphology were partially reversed following all treatments, especially the combined treatment. Decreased mitochondrial number and altered organization and density of cristae were observed in the impingement groups. Mitochondrial structure and number became more normal, with improvement in morphology of the cristae, after clip removal and/or SS-31 treatment. SOD activity decreased after impingement, compared with the control group, then increased significantly again after treatment, especially in the combined treatment group. Mitochondria-related gene expression decreased in the impingement groups and increased again after treatment. CONCLUSIONS The mitochondrial protectant SS-31 improved mitochondrial function, promoting tendon healing, especially when combined with removal of subacromial impingement. CLINICAL RELEVANCE Improving mitochondrial function with agents such as SS-31 may represent an effective treatment to promote healing in the setting of supraspinatus tendinopathy.
Collapse
Affiliation(s)
- Xueying Zhang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China.,Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY
| | - Edward Bowen
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY
| | - Meng Zhang
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY
| | - Hazel H Szeto
- Social Profit Network Research Lab, Menlo Park, California
| | - Xiang-Hua Deng
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY
| | - Scott A Rodeo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY
| |
Collapse
|
18
|
Wang S, Yao Z, Zhang X, Li J, Huang C, Ouyang Y, Qian Y, Fan C. Energy-Supporting Enzyme-Mimic Nanoscaffold Facilitates Tendon Regeneration Based on a Mitochondrial Protection and Microenvironment Remodeling Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202542. [PMID: 36000796 PMCID: PMC9631092 DOI: 10.1002/advs.202202542] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/15/2022] [Indexed: 05/15/2023]
Abstract
Tendon injury is a tricky and prevalent motor system disease, leading to compromised daily activity and disability. Insufficient regenerative capability and dysregulation of immune microenvironment are the leading causes of functional loss. First, this work identifies persistent oxidative stress and mitochondrial impairment in the regional tendon tissues postinjury. Therefore, a smart scaffold incorporating the enzyme mimicry nanoparticle-ceria nanozyme (CeNPs) into the nanofiber bundle scaffold (NBS@CeO) with porous, anisotropic, and enhanced mechanical properties is designed to innovatively explore a targeted energy-supporting repair strategy by rescuing mitochondrial function and remodeling the microenvironment favoring endogenous regeneration. The integrated CeNPs scavenge excessive reactive oxygen species (ROS), stabilize the mitochondria membrane potential (ΔΨm), and ATP synthesis of tendon-derived stem cells (TDSCs) under oxidative stress. In a rat Achilles tendon defect model, NBS@CeO reduces oxidative damage and accelerates structural regeneration of collagen fibers, manifesting as recovering mechanical properties and motor function. Furthermore, NBS@CeO mediates the rebalance of endogenous regenerative signaling and dysregulated immune microenvironment by alleviating senescence and apoptosis of TDSCs, downregulating the secretion of senescence-associated secretory phenotype (SASP), and inducing macrophage M2 polarization. This innovative strategy highlights the role of NBS@CeO in tendon repair and thus provides a potential therapeutic approach for promoting tendon regeneration.
Collapse
Affiliation(s)
- Shikun Wang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue RegenerationShanghai200233China
- Youth Science and Technology Innovation StudioShanghai Jiao Tong University School of MedicineShanghai200233China
| | - Zhixiao Yao
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue RegenerationShanghai200233China
- Youth Science and Technology Innovation StudioShanghai Jiao Tong University School of MedicineShanghai200233China
| | - Xinyu Zhang
- Engineering Research Center of Technical TextilesMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Juehong Li
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue RegenerationShanghai200233China
- Youth Science and Technology Innovation StudioShanghai Jiao Tong University School of MedicineShanghai200233China
| | - Chen Huang
- Engineering Research Center of Technical TextilesMinistry of EducationCollege of TextilesDonghua UniversityShanghai201620China
| | - Yuanming Ouyang
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue RegenerationShanghai200233China
- Youth Science and Technology Innovation StudioShanghai Jiao Tong University School of MedicineShanghai200233China
| | - Yun Qian
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue RegenerationShanghai200233China
- Youth Science and Technology Innovation StudioShanghai Jiao Tong University School of MedicineShanghai200233China
| | - Cunyi Fan
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue RegenerationShanghai200233China
- Youth Science and Technology Innovation StudioShanghai Jiao Tong University School of MedicineShanghai200233China
| |
Collapse
|
19
|
Zhang Y, Hou M, Liu Y, Liu T, Chen X, Shi Q, Geng D, Yang H, He F, Zhu X. Recharge of chondrocyte mitochondria by sustained release of melatonin protects cartilage matrix homeostasis in osteoarthritis. J Pineal Res 2022; 73:e12815. [PMID: 35726138 DOI: 10.1111/jpi.12815] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/21/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Recent evidence indicates that the mitochondrial functions of chondrocytes are impaired in the pathogenesis of osteoarthritis (OA). Melatonin can attenuate cartilage degradation through its antioxidant functions. This study aims to investigate whether melatonin could rescue the impaired mitochondrial functions of OA chondrocytes and protect cartilage metabolism. OA chondrocytes showed a compromised matrix synthesis capacity associated with mitochondrial dysfunction and aberrant oxidative stress. In vitro treatments with melatonin promoted the expression of cartilage extracellular matrix (ECM) components, improved adenosine triphosphate production, and attenuated mitochondrial oxidative stress. Mechanistically, either silencing of SOD2 or inhibition of SIRT1 abolished the protective effects of melatonin on mitochondrial functions and ECM synthesis. To achieve a sustained release effect, a melatonin-laden drug delivery system (DDS) was developed and intra-articular injection with DDS successfully improved cartilage matrix degeneration in a posttraumatic rat OA model. These findings demonstrate that melatonin-mediated recharge of mitochondria to rescue the mitochondrial functions of chondrocytes represents a promising therapeutic strategy to protect cartilage from OA.
Collapse
Affiliation(s)
- Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Yang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xi Chen
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Qin Shi
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
20
|
Liu Y, Deng XH, Carballo CB, Cong T, Piacentini A, Jordan Hall A, Ying L, Rodeo SA. Evaluating the role of subacromial impingement in rotator cuff tendinopathy: development and analysis of a novel rat model. J Shoulder Elbow Surg 2022; 31:1898-1908. [PMID: 35430367 DOI: 10.1016/j.jse.2022.02.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Subacromial impingement of the rotator cuff caused by variations in acromial anatomy or altered glenohumeral kinematics leads to inflammation and degeneration of the rotator cuff, ultimately contributing to the development of tendinopathy. However, the underlying cellular and molecular changes in the impinged tendon remain poorly understood. Because the rat is an accepted model for rotator cuff studies, we have developed a rat model to study rotator cuff tendinopathy. METHODS Forty-four adult male Sprague-Dawley rats were allocated to one of 4 study groups: intact control group (group 1, n = 11); bilateral subacromial surgical clip placement to induce supraspinatus impingement for 2 weeks (group 2, n = 11), 4 weeks (group 3, n = 11), and 8 weeks (group 4, n = 11). Bilateral shoulder specimens were harvested for biomechanical testing, histology, and quantitative real-time polymerase chain reaction (qRT-PCR) analysis. RESULTS Radiography confirmed that all microvascular clips remained in stable position in the subacromial space. Gross inspection of supraspinatus tendon specimens in the impingement groups revealed changes in tendon morphology at the enthesis and midsubstance. Biomechanical evaluation demonstrated decreased supraspinatus tendon failure force and tissue stiffness at all time points compared with control tendons. Semiquantitative scoring of histologic specimens demonstrated significant, persistent tendinopathic changes over 8 weeks. qRT-PCR analysis of impinged tendon specimens demonstrated upregulation of gene expression for Col3 and Mmp14 in the impingement groups compared with control groups. In muscle samples, significant upregulation was seen in the expression of genes that are commonly associated with muscle atrophy (MuRF1 and Ube2b) and fatty infiltration (Fabp4, Pparg2, and Klf15). CONCLUSION This new rat subacromial impingement model creates cellular and molecular changes consistent with the development of rotator cuff tendinopathy. The results of this study may serve as a baseline for future investigation.
Collapse
Affiliation(s)
- Yulei Liu
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, USA; Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Xiang-Hua Deng
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, USA
| | - Camila B Carballo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, USA
| | - Ting Cong
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, USA
| | - Alexander Piacentini
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, USA
| | - Arielle Jordan Hall
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, USA
| | - Liang Ying
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, USA
| | - Scott A Rodeo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
21
|
Zhang X, Zhang Y, Zhang M, Nakagawa Y, Caballo CB, Szeto HH, Deng XH, Rodeo SA. Evaluation of SS-31 as a Potential Strategy for Tendinopathy Treatment: An In Vitro Model. Am J Sports Med 2022; 50:2805-2816. [PMID: 35862638 DOI: 10.1177/03635465221107943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Studies in our laboratory have demonstrated mitochondrial dysfunction in human and animal models of supraspinatus tendinopathy. SS-31 (elamipretide) has been reported to improve mitochondrial function and to be effective in clinical trials for several diseases. The potential of SS-31 in treating tendinopathy has not been explored. HYPOTHESIS SS-31 would improve mitochondrial function in human tenocytes sampled from patients with tendinopathy. STUDY DESIGN Controlled laboratory study. METHODS Healthy tenocytes were obtained from normal hamstring tendon biopsy specimens in 9 patients undergoing anterior cruciate ligament reconstruction, and tenocytes were collected from degenerative supraspinatus tendon biopsy specimens in 9 patients undergoing rotator cuff repair. Tenocytes were cultured, used at passage 1, and assigned to 4 groups: healthy tenocytes, healthy tenocytes with 1μM SS-31 treatment for 72 hours, degenerative tenocytes, and degenerative tenocytes with 1μM SS-31 treatment for 72 hours. The outcomes included measurements of mitochondrial potential, mitochondrial morphology by transmission electron microscopy imaging, reactive oxygen species and superoxidative dismutase activity, gene expression, and cell viability. RESULTS An increase in the cell fraction with depolarized mitochondria was found in degenerative tenocytes (P = .014), followed by a decrease after SS-31 treatment (P = .018). Transmission electron microscopy images demonstrated morphological changes with a decreased number and size of mitochondria per cell in the degenerative tenocytes (P = .018) and with improvement after SS-31 treatment. There was no significant difference in the level of reactive oxygen species between healthy and degenerative tenocytes in culture, but superoxidative dismutase activity was significantly decreased in the degenerative group (P = .006), which then increased after SS-31 treatment (P = .012). These findings suggested that mitochondrial dysfunction may be reversed by SS-31 treatment. The gene expression of matrix metalloproteinase-1 (matrix remodeling, P = .029) and fatty acid-binding protein 4 (fatty infiltration, P = .046) was significantly upregulated in the degenerative tenocytes and reduced by SS-31 treatment (P = .048; P = .007). Gene expression for hypoxia-inducible factor1 α and the proapoptotic regulator Bcl-2-associated X protein was increased in the degenerative tenocytes. There was a significant decrease in cell viability in degenerative tenocytes as compared with the healthy tenocytes, with small improvement after treatment with SS-31. CONCLUSION There are changes in mitochondrial structure and function in tenocytes derived from degenerative tendons, and SS-31, as a mitochondrial protectant, could improve mitochondrial function and promote the healing of tendinopathy. CLINICAL RELEVANCE Mitochondrial dysfunction appears to play a role in the development of tendinopathy, and SS-31, as a mitochondrial protective agent, may be a therapeutic agent in the treatment of tendinopathy.
Collapse
Affiliation(s)
- Xueying Zhang
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA.,Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ying Zhang
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Meng Zhang
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Yusuke Nakagawa
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Camila B Caballo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Hazel H Szeto
- Social Profit Network Research Lab, Menlo Park, California, USA
| | - Xiang-Hua Deng
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Scott A Rodeo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
22
|
Roles of Oxidative Stress in Acute Tendon Injury and Degenerative Tendinopathy-A Target for Intervention. Int J Mol Sci 2022; 23:ijms23073571. [PMID: 35408931 PMCID: PMC8998577 DOI: 10.3390/ijms23073571] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Both acute and chronic tendon injuries are disabling sports medicine problems with no effective treatment at present. Sustained oxidative stress has been suggested as the major factor contributing to fibrosis and adhesion after acute tendon injury as well as pathological changes of degenerative tendinopathy. Numerous in vitro and in vivo studies have shown that the inhibition of oxidative stress can promote the tenogenic differentiation of tendon stem/progenitor cells, reduce tissue fibrosis and augment tendon repair. This review aims to systematically review the literature and summarize the clinical and pre-clinical evidence about the potential relationship of oxidative stress and tendon disorders. The literature in PubMed was searched using appropriate keywords. A total of 81 original pre-clinical and clinical articles directly related to the effects of oxidative stress and the activators or inhibitors of oxidative stress on the tendon were reviewed and included in this review article. The potential sources and mechanisms of oxidative stress in these debilitating tendon disorders is summarized. The anti-oxidative therapies that have been examined in the clinical and pre-clinical settings to reduce tendon fibrosis and adhesion or promote healing in tendinopathy are reviewed. The future research direction is also discussed.
Collapse
|
23
|
Liu Y, Deng XH, Zhang X, Cong T, Chen D, Hall AJ, Ying L, Rodeo SA. The Role of Indian Hedgehog Signaling in Tendon Response to Subacromial Impingement: Evaluation Using a Mouse Model. Am J Sports Med 2022; 50:362-370. [PMID: 34904906 DOI: 10.1177/03635465211062244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The underlying cellular and molecular mechanisms involved in the development of tendinopathy due to subacromial supraspinatus tendon (SST) impingement and the response to subsequent removal of impingement remain unknown. PURPOSE To investigate the involvement of Indian hedgehog (IHH) signaling in the development of SST tendinopathy and the subsequent healing process after the relief of subacromial impingement in a novel mouse shoulder impingement model. STUDY DESIGN Controlled laboratory study. METHODS A total of 48 male wild-type C57BL/6 mice were used in this study. Supraspinatus tendinopathy was induced by inserting a microsurgical clip into the subacromial space bilaterally. Eleven mice were sacrificed at 4 weeks after surgery to establish impingement baseline; 24 mice underwent clip removal at 4 weeks after surgery and then were euthanized at 2 or 4 weeks after clip removal. Thirteen mice without surgical intervention were utilized as the control group. All SSTs were evaluated with biomechanical testing; quantitative histomorphometry after staining with hematoxylin and eosin, Alcian blue, and picrosirius red; and immunohistochemical staining (factor VIII, IHH, Patched1 [PTCH1], and glioma-associated oncogene homolog 1 [GLI1]). RESULTS The mean failure force and stiffness in the 4-week impingement group decreased significantly compared with the control group (P < .001) and gradually increased at 2 and 4 weeks after clip removal. Histological analysis demonstrated increased cellularity and disorganized collagen fibers in the SST, with higher modified Bonar scores at 4 weeks, followed by gradual improvement after clip removal. The IHH-positive area and PTCH1- and GLI1-positive cell percentages significantly increased after 4 weeks of clip impingement (20.64% vs 2.06%, P < .001; 53.9% vs 28.03%, P = .016; and 30% vs 12.19%, P = .036, respectively) and continuously increased after clip removal. CONCLUSION The authors' findings suggest that the hedgehog signaling pathway and its downstream signaling mediator and target GLI1 may play a role in the development and healing process of rotator cuff tendinopathy due to extrinsic rotator cuff impingement. CLINICAL RELEVANCE This study suggests the potential for the hedgehog pathway, together with its downstream targets, as candidates for further study as potential therapeutic targets in the treatment of supraspinatus tendinopathy.
Collapse
Affiliation(s)
- Yulei Liu
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA.,Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Xiang-Hua Deng
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Xueying Zhang
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Ting Cong
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Daoyun Chen
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Arielle Jordan Hall
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Liang Ying
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Scott A Rodeo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
24
|
Wang C, Zhang Y, Zhang G, Yu W, He Y. Adipose Stem Cell-Derived Exosomes Ameliorate Chronic Rotator Cuff Tendinopathy by Regulating Macrophage Polarization: From a Mouse Model to a Study in Human Tissue. Am J Sports Med 2021; 49:2321-2331. [PMID: 34259608 DOI: 10.1177/03635465211020010] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Chronic rotator cuff (RC) tendinopathy is one of the most prevalent causes of shoulder pain. Growing evidence suggests that macrophages play a significant role in the proinflammatory response, resolution of inflammation, and tissue healing of tendinopathy. In particular, enhancement of M2 macrophage (M2φ) activity contributes to the accelerated healing of tendinopathy. Therefore, a treatment that enhances M2φ polarization would be useful for patients with this common musculoskeletal disorder. PURPOSE To investigate whether adipose stem cell-derived exosomes (ASC-Exos) enhance M2φ polarization and ameliorate chronic RC tendinopathy. STUDY DESIGN Controlled laboratory study. METHODS First, we compared the effects of ASC-Exos on polarization of mouse bone marrow-derived macrophages between a classically activated phenotype (M1φ) and an alternatively activated phenotype (M2φ) in vitro. In total, 72 C57BL/6 mice were assigned to normal cage activity (n = 24) or 5 weeks of treadmill overuse (n = 48). The supraspinatus tendon of each treadmill overuse mouse was treated with ASC-Exos (n = 24) or saline (n = 24). Histological and biomechanical outcomes were assessed 4 weeks after treatment. Finally, tissue samples from human patients with RC tendinopathy were obtained to assay the effect of ASC-Exos on the M1φ/M2φ balance in tissue-resident macrophages. RESULTS ASC-Exos inhibited M1φ polarization and augmented M2φ polarization in vitro and in vivo. Mice in the ASC-Exos group showed less severe pathological changes than those in the saline group, including less cellular infiltration, disorganization of collagen, and ground substance deposition. The modified Bonar score of the ASC-Exos group (mean ± SD, 7.68 ± 1.03) was significantly lower than that of the saline group (9.81 ± 0.96; P < .05). Furthermore, the maximum failure load was significantly higher in the ASC-Exos group than in the saline group (4.23 ± 0.66 N vs 3.86 ± 0.65 N; P < .05), as was stiffness (3.38 ± 0.34 N/m vs 2.68 ± 0.49 N/m; P < .05). CONCLUSION ASC-Exos-mediated polarization balance of M1φ/M2φ contributes to the amelioration of chronic RC tendinopathy. Regulation of the M1φ/M2φ balance could be a new target for the treatment of chronic RC tendinopathy. CLINICAL RELEVANCE Administration of ASC-Exos is a cell-free approach that may become a novel treatment option for chronic RC tendinopathy and should be explored further.
Collapse
Affiliation(s)
- Chongyang Wang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yao Zhang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guangcheng Zhang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Weilin Yu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yaohua He
- Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| |
Collapse
|
25
|
Zhang X, Eliasberg CD, Rodeo SA. Mitochondrial dysfunction and potential mitochondrial protectant treatments in tendinopathy. Ann N Y Acad Sci 2021; 1490:29-41. [PMID: 33843069 DOI: 10.1111/nyas.14599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 01/17/2023]
Abstract
Tendinopathy is a common musculoskeletal condition that affects a wide range of patients, including athletes, laborers, and older patients. Tendinopathy is often characterized by pain, swelling, and impaired performance and function. The etiology of tendinopathy is multifactorial, including both intrinsic and extrinsic mechanisms. Various treatment strategies have been described, but outcomes are often variable, as tendons have poor intrinsic healing potential compared with other tissues. Therefore, several novel targets for tendon regeneration have been identified and are being explored. Mitochondria are organelles that generate adenosine triphosphate, and they are considered to be the power generators of the cell. Recently, mitochondrial dysfunction verified by increased reactive oxygen species (ROS), decreased superoxide dismutase activity, cristae disorganization, and decreased number of mitochondria has been identified as a mechanism that may contribute to tendinopathy. This has provided new insights for studying tendinopathy pathogenesis and potential treatments via antioxidant, metabolic modulation, or ROS inhibition. In this review, we present the current understanding of mitochondrial dysfunction in tendinopathy. The review summarizes the potential mechanism by which mitochondrial dysfunction contributes to the development of tendinopathy, as well as the potential therapeutic benefits of mitochondrial protectants in the treatment of tendinopathy.
Collapse
Affiliation(s)
- Xueying Zhang
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York.,Department of Sports Medicine & Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Claire D Eliasberg
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Scott A Rodeo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| |
Collapse
|