1
|
Inoue Y, Takeda H. Teratorn and its relatives - a cross-point of distinct mobile elements, transposons and viruses. Front Vet Sci 2023; 10:1158023. [PMID: 37187934 PMCID: PMC10175614 DOI: 10.3389/fvets.2023.1158023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Mobile genetic elements (e.g., transposable elements and plasmids) and viruses display significant diversity with various life cycles, but how this diversity emerges remains obscure. We previously reported a novel and giant (180 kb long) mobile element, Teratorn, originally identified in the genome of medaka, Oryzias latipes. Teratorn is a composite DNA transposon created by a fusion of a piggyBac-like DNA transposon (piggyBac) and a novel herpesvirus of the Alloherpesviridae family. Genomic survey revealed that Teratorn-like herpesviruses are widely distributed among teleost genomes, the majority of which are also fused with piggyBac, suggesting that fusion with piggyBac is a trigger for the life-cycle shift of authentic herpesviruses to an intragenomic parasite. Thus, Teratorn-like herpesvirus provides a clear example of how novel mobile elements emerge, that is to say, the creation of diversity. In this review, we discuss the unique sequence and life-cycle characteristics of Teratorn, followed by the evolutionary process of piggyBac-herpesvirus fusion based on the distribution of Teratorn-like herpesviruses (relatives) among teleosts. Finally, we provide other examples of evolutionary associations between different classes of elements and propose that recombination could be a driving force generating novel mobile elements.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Helmprobst F, Kneitz S, Klotz B, Naville M, Dechaud C, Volff JN, Schartl M. Differential expression of transposable elements in the medaka melanoma model. PLoS One 2021; 16:e0251713. [PMID: 34705830 PMCID: PMC8550402 DOI: 10.1371/journal.pone.0251713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Malignant melanoma incidence is rising worldwide. Its treatment in an advanced state is difficult, and the prognosis of this severe disease is still very poor. One major source of these difficulties is the high rate of metastasis and increased genomic instability leading to a high mutation rate and the development of resistance against therapeutic approaches. Here we investigate as one source of genomic instability the contribution of activation of transposable elements (TEs) within the tumor. We used the well-established medaka melanoma model and RNA-sequencing to investigate the differential expression of TEs in wildtype and transgenic fish carrying melanoma. We constructed a medaka-specific TE sequence library and identified TE sequences that were specifically upregulated in tumors. Validation by qRT- PCR confirmed a specific upregulation of a LINE and an LTR element in malignant melanomas of transgenic fish.
Collapse
Affiliation(s)
- Frederik Helmprobst
- Physiological Chemistry, Biocenter, University of Würzburg, Würzburg, Germany
- Department of Neuropathology, Philipps-University Marburg, Marburg, Germany
- * E-mail: (FH); (MS)
| | - Susanne Kneitz
- Physiological Chemistry, Biocenter, University of Würzburg, Würzburg, Germany
- Biochemistry and Cell Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Barbara Klotz
- Physiological Chemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Corentin Dechaud
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Manfred Schartl
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, United States of America
- Developmental Biochemistry, University of Würzburg, Würzburg, Germany
- * E-mail: (FH); (MS)
| |
Collapse
|
3
|
Carducci F, Barucca M, Canapa A, Carotti E, Biscotti MA. Mobile Elements in Ray-Finned Fish Genomes. Life (Basel) 2020; 10:E221. [PMID: 32992841 PMCID: PMC7599744 DOI: 10.3390/life10100221] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Ray-finned fishes (Actinopterygii) are a very diverse group of vertebrates, encompassing species adapted to live in freshwater and marine environments, from the deep sea to high mountain streams. Genome sequencing offers a genetic resource for investigating the molecular bases of this phenotypic diversity and these adaptations to various habitats. The wide range of genome sizes observed in fishes is due to the role of transposable elements (TEs), which are powerful drivers of species diversity. Analyses performed to date provide evidence that class II DNA transposons are the most abundant component in most fish genomes and that compared to other vertebrate genomes, many TE superfamilies are present in actinopterygians. Moreover, specific TEs have been reported in ray-finned fishes as a possible result of an intricate relationship between TE evolution and the environment. The data summarized here underline the biological interest in Actinopterygii as a model group to investigate the mechanisms responsible for the high biodiversity observed in this taxon.
Collapse
Affiliation(s)
| | | | | | | | - Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.C.); (M.B.); (A.C.); (E.C.)
| |
Collapse
|
4
|
Yano CF, Bertollo LAC, Molina WF, Liehr T, Cioffi MDB. Genomic organization of repetitive DNAs and its implications for male karyotype and the neo-Y chromosome differentiation in Erythrinus erythrinus (Characiformes, Erythrinidae). COMPARATIVE CYTOGENETICS 2014; 8:139-51. [PMID: 25147625 PMCID: PMC4137284 DOI: 10.3897/compcytogen.v8i2.7597] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/29/2014] [Indexed: 05/19/2023]
Abstract
Studies have demonstrated the effective participation of repetitive DNA sequences in the origin and differentiation of the sex chromosomes in some biological groups. In this study several microsatellites and retrotranposable sequences were cytogenetically mapped in the Erythrinus erythrinus (Bloch & Schneider, 1801) male genome (karyomorph C), focusing on the distribution of these sequences in the sex chromosomes and in the evolutionary processes related to their differentiation. Males of E. erythrinus - karyomorph C - present 2n = 51 chromosomes (7m + 2sm + 6st + 36a), including the X1X2Y sex chromosomes. The C-positive heterochromatin has a predominant localization on the centromeric region of most chromosome pairs, but also in some telomeric regions. The 5S rDNA sites are located in the centromeric region of 27 chromosomes, including 26 acrocentric ones and the metacentric Y chromosome. The retrotransposons Rex 1 and Rex 6 show a dispersed pattern in the karyotype, contrasting with the Rex 3 distribution which is clearly co-localized with all the 27 5S rDNA sites. The microsatellite sequences show a differential distribution, some of them restricted to telomeric and/or interstitial regions and others with a scattered distribution on the chromosomes. However, no preferential accumulation of these elements were observed in the neo-Y chromosome, in contrast to what usually occurs in simple sex chromosome systems.
Collapse
Affiliation(s)
- Cassia Fernanda Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís (SP 310) Km 235, São Carlos, SP, Brazil
| | - Luiz Antonio Carlos Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís (SP 310) Km 235, São Carlos, SP, Brazil
- Professor Sênior at Universidade Federal de São Carlos
| | - Wagner Franco Molina
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís (SP 310) Km 235, São Carlos, SP, Brazil
| |
Collapse
|
5
|
Di Matteo M, Belay E, Chuah MK, Vandendriessche T. Recent developments in transposon-mediated gene therapy. Expert Opin Biol Ther 2012; 12:841-58. [PMID: 22679910 DOI: 10.1517/14712598.2012.684875] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The continuous improvement of gene transfer technologies has broad implications for stem cell biology, gene discovery, and gene therapy. Although viral vectors are efficient gene delivery vehicles, their safety, immunogenicity and manufacturing challenges hamper clinical progress. In contrast, non-viral gene delivery systems are less immunogenic and easier to manufacture. AREAS COVERED In this review, we explore the emerging potential of transposons in gene and cell therapy. The safety, efficiency, and biology of novel hyperactive Sleeping Beauty (SB) and piggyBac (PB) transposon systems will be highlighted for ex vivo gene therapy in clinically relevant adult stem/progenitor cells, particularly hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), myoblasts, and induced pluripotent stem (iPS) cells. Moreover, efforts toward in vivo transposon-based gene therapy will be discussed. EXPERT OPINION The latest generation SB and PB transposons currently represent some of the most attractive systems for stable non-viral genetic modification of primary cells, particularly adult stem cells. This paves the way toward the use of transposons as a non-viral gene therapy approach to correct hereditary disorders including those that affect the hematopoietic system. The development of targeted integration into "safe harbor" genetic loci may further improve their safety profile.
Collapse
Affiliation(s)
- Mario Di Matteo
- Free University of Brussels, Division of Gene Therapy & Regenerative Medicine, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | | | | | | |
Collapse
|
6
|
Hartmann N, Englert C. A microinjection protocol for the generation of transgenic killifish (Species: Nothobranchius furzeri). Dev Dyn 2012; 241:1133-41. [DOI: 10.1002/dvdy.23789] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2012] [Indexed: 01/10/2023] Open
|
7
|
Jiang XY, Du XD, Tian YM, Shen RJ, Sun CF, Zou SM. Goldfish transposase Tgf2 presumably from recent horizontal transfer is active. FASEB J 2012; 26:2743-52. [PMID: 22441985 DOI: 10.1096/fj.11-199273] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hobo/Activator/Tam3 (hAT) superfamily transposons occur in plants and animals and play a role in genomic evolution. Certain hAT transposons are active and have been developed as incisive genetic tools. Active vertebrate elements are rarely discovered; however, Tgf2 transposon was recently discovered in goldfish (Carassius auratus). Here, we found that the endogenous Tgf2 element can transpose in goldfish genome. Seven different goldfish mRNA transcripts, encoding three lengths of Tgf2 transposase, were identified. Tgf2 transposase mRNA was detected in goldfish embryos, mainly in epithelial cells; levels were high in ovaries and mature eggs and in all adult tissues tested. Endogenous Tgf2 transposase mRNA is active in mature eggs and can mediate high rates of transposition (>30%) when injected with donor plasmids harboring a Tgf2 cis-element. When donor plasmid was coinjected with capped Tgf2 transposase mRNA, the insertion rate reached >90% at 1 yr. Nonautonomous copies of the Tgf2 transposon with large-fragment deletions and low levels of point mutations were also detected in common goldfish. Phylogenetic analysis indicates the taxonomic distribution of Tgf2 in goldfish is not due to vertical inheritance. We propose that the goldfish Tgf2 transposon originated by recent horizontal transfer and maintains a highly native activity.
Collapse
Affiliation(s)
- Xia-Yun Jiang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
8
|
Moriyama Y, Kawanishi T, Nakamura R, Tsukahara T, Sumiyama K, Suster ML, Kawakami K, Toyoda A, Fujiyama A, Yasuoka Y, Nagao Y, Sawatari E, Shimizu A, Wakamatsu Y, Hibi M, Taira M, Okabe M, Naruse K, Hashimoto H, Shimada A, Takeda H. The medaka zic1/zic4 mutant provides molecular insights into teleost caudal fin evolution. Curr Biol 2012; 22:601-7. [PMID: 22386310 DOI: 10.1016/j.cub.2012.01.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/26/2011] [Accepted: 01/31/2012] [Indexed: 10/28/2022]
Abstract
Teleosts have an asymmetrical caudal fin skeleton formed by the upward bending of the caudal-most portion of the body axis, the ural region. This homocercal type of caudal fin ensures powerful and complex locomotion and is regarded as one of the most important innovations for teleosts during adaptive radiation in an aquatic environment. However, the mechanisms that create asymmetric caudal fin remain largely unknown. The spontaneous medaka (teleost fish) mutant, Double anal fin (Da), exhibits a unique symmetrical caudal skeleton that resembles the diphycercal type seen in Polypterus and Coelacanth. We performed a detailed analysis of the Da mutant to obtain molecular insight into caudal fin morphogenesis. We first demonstrate that a large transposon, inserted into the enhancer region of the zic1 and zic4 genes (zic1/zic4) in Da, is associated with the mesoderm-specific loss of their transcription. We then show that zic1/zic4 are strongly expressed in the dorsal part of the ural mesenchyme and thereby induce asymmetric caudal fin development in wild-type embryos, whereas their expression is lost in Da. Comparative analysis further indicates that the dorsal mesoderm expression of zic1/zic4 is conserved in teleosts, highlighting the crucial role of zic1/zic4 in caudal fin morphogenesis.
Collapse
Affiliation(s)
- Yuuta Moriyama
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ferreira DC, Porto-Foresti F, Oliveira C, Foresti F. Transposable elements as a potential source for understanding the fish genome. Mob Genet Elements 2011; 1:112-117. [PMID: 22016858 DOI: 10.4161/mge.1.2.16731] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 05/11/2011] [Accepted: 05/30/2011] [Indexed: 12/24/2022] Open
Abstract
Transposable elements are repetitive sequences with the capacity tomove inside of the genome. They constitute the majority of the eukaryotic genomes, and are extensively present in the human genome, representing more than 45% of the genome sequences. The knowledge of the origin and function of these elements in the fish genome is still reduced and fragmented, mainly with regard to its structure and organization in the chromosomes of the representatives of this biological group, with data currently available for very few species that represent the great variety of forms and existing diversity. Comparative analyses ascertain differences in the organization of such elements in the species studied up to the present. They can be part of the heterochromatic regions in some species or be spread throughout the genome in others. The main objective of the present revision is to discuss the aspects of the organization of transposable elements in the fish genome.
Collapse
Affiliation(s)
- Daniela Cristina Ferreira
- Departamento de Morfologia; Instituto de Biociência; Universidade Estadual Paulista; Bauru, SP Brazil
| | | | | | | |
Collapse
|
10
|
Abstract
The medaka fish, Oryzias latipes, is an emerging vertebrate model and now has a high quality draft genome and a number of unique mutants. The long history of medaka research in Japan has provided medaka with unique features, which are complementary to other vertebrate models. A large collection of spontaneous mutants collected over a century, the presence of highly polymorphic inbred lines established over decades, and the recently completed genome sequence all give the medaka a big boost. This review focuses on the state of the art in medaka genetics and genomics, such as the first isolation of active transposons in vertebrates, the influence of chromatin structure on sequence variation, fine quantitative trait locus (QTL) analysis, and versatile mutants as human disease models.
Collapse
Affiliation(s)
- Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan.
| | | |
Collapse
|
11
|
Koga A, Wakamatsu Y, Sakaizumi M, Hamaguchi S, Shimada A. Distribution of complete and defective copies of the Tol1 transposable element in natural populations of the medaka fish Oryzias latipes. Genes Genet Syst 2010; 84:345-52. [PMID: 20154421 DOI: 10.1266/ggs.84.345] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
DNA-based transposable elements are present in the genomes of various organisms, and generally occur in autonomous and nonautonomous forms, with a good correspondence to complete and defective copies, respectively. In vertebrates, however, the vast majority of DNA-based elements occur only in the nonautonomous form. Until now, the only clear exception known has been the Tol2 element of the medaka fish, which still causes mutations in genes of the host species. Here, we report another exception: the Tol1 element of the same species. This element was thought likely to be a "dead" element like the vast majority of vertebrate elements, but recent identification of an autonomous Tol1 copy in a laboratory medaka strain gave rise to the possibility that the element is still "alive" in medaka natural populations. We examined variation in the structure of Tol1 copies through genomic Southern blot analysis, and revealed that 10 of the 32 fish samples examined contained full-length Tol1 copies in their genomes. The frequency at which these copies occur among Tol1 copies is at most 0.5%, yet some of them still have the ability to produce a functional transposase. The medaka fish thus harbors two active DNA-based elements in its genome, and is in this respect unique among vertebrates.
Collapse
Affiliation(s)
- Akihiko Koga
- Primate Research Institute, Kyoto University, Inuyama City 464-8506, Japan
| | | | | | | | | |
Collapse
|
12
|
Ni J, Clark KJ, Fahrenkrug SC, Ekker SC. Transposon tools hopping in vertebrates. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 7:444-53. [PMID: 19109308 DOI: 10.1093/bfgp/eln049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the past decade, tools derived from DNA transposons have made major contributions to vertebrate genetic studies from gene delivery to gene discovery. Multiple, highly complementary systems have been developed, and many more are in the pipeline. Judging which DNA transposon element will work the best in diverse uses from zebrafish genetic manipulation to human gene therapy is currently a complex task. We have summarized the major transposon vector systems active in vertebrates, comparing and contrasting known critical biochemical and in vivo properties, for future tool design and new genetic applications.
Collapse
Affiliation(s)
- Jun Ni
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
13
|
Koga A, Cheah FSH, Hamaguchi S, Yeo GH, Chong SS. Germline transgenesis of zebrafish using the medaka Tol1 transposon system. Dev Dyn 2009; 237:2466-74. [PMID: 18729212 DOI: 10.1002/dvdy.21688] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Tol1 is a DNA-based transposable element first identified from an albino mutant medaka fish. It has been demonstrated to function as an efficient gene transfer vector in mammalian cells. We now demonstrate Tol1 germline transgenesis in zebrafish. A construct containing the green fluorescence protein (GFP) reporter gene inserted between the Tol1 arms was microinjected together with Tol1 transposase mRNA into fertilized eggs. Sustained GFP expression was observed in 88% of 1-month-old fish, suggesting efficient transposon integration into somatic cells. Eleven of 24 adult GFP-positive fish yielded GFP-positive progeny. Sequencing analysis of Tol1 insertion sites in GFP-positive progeny confirmed Tol1 transposition-mediated integrations into zebrafish chromosomes. We also observed functional independence of the Tol1 transposase-substrate system from that of Tol2, another medaka-derived transposon. Coupled with its previously demonstrated maximal cargo capacity of >20 kb, Tol1 could serve as a useful addition to the zebrafish genetic engineering toolbox.
Collapse
Affiliation(s)
- Akihiko Koga
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | | | | | | | | |
Collapse
|
14
|
Yamagami S, Suzuki N. Diverse Forms of Guanylyl Cyclases in Medaka Fish – Their Genomic Structure and Phylogenetic Relationships to those in Vertebrates and Invertebrates. Zoolog Sci 2005; 22:819-35. [PMID: 16141695 DOI: 10.2108/zsj.22.819] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fish species such as medaka fish, fugu, and zebrafish contain more guanylyl cyclases (GCs) than do mammals. These GCs can be divided into two types: soluble GCs and membrane GCs. The latter are further divided into four subfamilies: (i) natriuretic peptide receptors, (ii) STa/guanylin receptors, (iii) sensory-organ-specific membrane GCs, and (iv) orphan receptors. Phylogenetic analyses of medaka fish GCs, along with those of fugu and zebrafish, suggest that medaka fish is a much closer relative to fugu than to zebrafish. Analyses of nucleotide data available on a web site (http://www.ncbi. nlm.nih.gov/) of GCs from a range of organisms from bacteria to vertebrates suggest that gene duplication, and possibly chromosomal duplication, play important roles in the divergence of GCs. In particular, the membrane GC genes were generated by chromosomal duplication before the divergence of tetrapods and teleosts.
Collapse
Affiliation(s)
- Sayaka Yamagami
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | |
Collapse
|
15
|
Matsuo MY, Nonaka M. Repetitive elements in the major histocompatibility complex (MHC) class I region of a teleost, medaka: identification of novel transposable elements. Mech Dev 2005; 121:771-7. [PMID: 15210184 DOI: 10.1016/j.mod.2004.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 03/11/2004] [Accepted: 03/22/2004] [Indexed: 11/27/2022]
Abstract
The repetitive elements of medaka (Oryzias latipes) are poorly characterized in spite of recent rapid progress in the medaka genome analysis. Here we report the characterization of the repetitive elements in the major histocompatibility complex (MHC) class I region, which spans about 400 kb and is one of the best characterized regions of the medaka genome. Microsatellite, low complexity regions, transposable elements, and other repeats occupied 0.68, 0.98, 7.0 and 2.9%, respectively, of the MHC class I region. Eleven transposable elements, three LTR-type, six LINE-type and two DNA-type, including several novel ones, were identified. Genomic Southern hybridization analysis indicated that these LINE-type and DNA-type elements have many copies in the medaka genome, whereas the LTR-type elements have only several copies. The comparison of the medaka MHC class I region with those of zebrafish and fugu shows the presence of three medaka lineage-specific tandem duplications of the PSMB (proteasome beta-type subunit) 8 and class Ia genes. Since eight of the 11 transposable elements were located in this region, these elements may have played a role in the medaka-specific DNA rearrangement.
Collapse
Affiliation(s)
- Megumi Y Matsuo
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
16
|
Schartl M, Nanda I, Kondo M, Schmid M, Asakawa S, Sasaki T, Shimizu N, Henrich T, Wittbrodt J, Furutani-Seiki M, Kondoh H, Himmelbauer H, Hong Y, Koga A, Nonaka M, Mitani H, Shima A. Current status of medaka genetics and genomics. The Medaka Genome Initiative (MGI). Methods Cell Biol 2004; 77:173-99. [PMID: 15602912 DOI: 10.1016/s0091-679x(04)77010-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Manfred Schartl
- Biocenter, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|