1
|
Hasegawa Y, Surugaya R, Tousaka K, Adachi S, Ijiri S. Identification of maturation-inducing steroid in sturgeons via comprehensive analyses of steroids produced during oocyte maturation. J Steroid Biochem Mol Biol 2024; 238:106442. [PMID: 38122870 DOI: 10.1016/j.jsbmb.2023.106442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Although 17α, 20β-dihydroxy-4-pregnen-3-one (DHP) and 17α, 20β, 21-trihydroxy-4-pregnen-3-one (20β-S) have been identified as maturation-inducing steroids (MIS) in several teleosts, to date, no MISs have been identified in sturgeons. As it remains possible that an unidentified steroid is an MIS in sturgeons, this study aimed to identify a sturgeon MIS via comprehensive analyses and maturation-inducing (MI) assay of C21 steroids. In vivo and in vitro comprehensive analyses of C21 steroids revealed that serum DHP concentrations were rapidly elevated in the oocyte maturation phase and the DHP production level was notably high among C21 steroids. MI assay indicated that the MI activity of DHP, 17α-hydroxyprogesterone (17OHP), a precursor of DHP, 17α, 20α-dihydroxy-4-pregnen-3-one (αDHP), and 20β-S was high among C21 steroids, but the MI activity of these steroids were similar. In the C21 steroids produced in ovarian follicles during oocyte maturation, 17OHP, αDHP, and unidentified compounds had a low production level, and 20β-S was suggested to be metabolized from DHP after oocyte maturation. Against this background, this study concluded that DHP is a steroid that possesses strong MI activity and is highly produced during oocyte maturation. Although this study could not identify an MIS in sturgeons by fractionation of plasma and subsequent bio assay, it was suggested that DHP is a major MIS in sturgeons.
Collapse
Affiliation(s)
- Yuya Hasegawa
- Graduate School of Fisheries Sciences, Hokkaido University, Minato-cho 3-1-1, Hakodate, Hokkaido 041-8611, Japan.
| | - Ryohei Surugaya
- Graduate School of Fisheries Sciences, Hokkaido University, Minato-cho 3-1-1, Hakodate, Hokkaido 041-8611, Japan.
| | - Kazuki Tousaka
- Graduate School of Fisheries Sciences, Hokkaido University, Minato-cho 3-1-1, Hakodate, Hokkaido 041-8611, Japan.
| | - Shinji Adachi
- Graduate School of Fisheries Sciences, Hokkaido University, Minato-cho 3-1-1, Hakodate, Hokkaido 041-8611, Japan.
| | - Shigeho Ijiri
- Graduate School of Fisheries Sciences, Hokkaido University, Minato-cho 3-1-1, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
2
|
Nyuji M, Hongo Y, Kazeto Y, Yoneda M. Characterization of eight types of 17β-hydroxysteroid dehydrogenases from the Japanese sardine Sardinops melanostictus: The probable role of type 12a in ovarian estradiol synthesis. Gen Comp Endocrinol 2024; 347:114423. [PMID: 38086427 DOI: 10.1016/j.ygcen.2023.114423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023]
Abstract
17β-hydroxysteroid dehydrogenases (Hsd17bs) play a critical role in sex steroid biosynthesis. Although multiple types of Hsd17b have been found in fish, there is limited research on their expression and function. Recently, we succeeded in identifying eight types of Hsd17b (types 3, 4, 7, 8, 10, 12a, 12b, and 14) by RNA sequencing in the Japanese sardine Sardinops melanostictus, a commercially important clupeoid fish; however, a homologous sequence of Hsd17b1, which catalyzes the key reaction of estradiol-17β (E2) synthesis, was absent. Here, we aimed to identify the Hsd17b type that plays a major role in E2 synthesis during ovarian development in Japanese sardine. The cDNAs encoding those eight types of Hsd17b were cloned and sequenced. The expressions of hsd17b3, hsd17b12a, and hsd17b12b were higher in ovary than in testis. In particular, hsd17b12a was predominantly expressed in the ovary. Expression of hsd17b3, hsd17b4, hsd17b12a, and hsd17b12b in the ovary increased during ovarian development. The enzymatic activities of Hsd17b3, Hsd17b12a, and Hsd17b12b were evaluated by expressing their recombinants in human embryonic kidney 293T cells. Hsd17b12a and Hsd17b12b catalyzed the conversion of androstenedione (AD) to testosterone (T) and estrone (E1) to E2. The results of in vitro bioassays using sardine ovaries indicated that E2 is synthesized from pregnenolone via AD and T, but not E1. These results suggest that Hsd17b12a plays a major role in E2 synthesis in sardine ovary by catalyzing the conversion of AD to T.
Collapse
Affiliation(s)
- Mitsuo Nyuji
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Nagasaki 851-2213, Japan.
| | - Yuki Hongo
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Yokohama 236-8648, Japan
| | - Yukinori Kazeto
- Fisheries Technology Institute, Minamiizu Field Station, Japan Fisheries Research and Education Agency, Shizuoka 415-0156, Japan
| | - Michio Yoneda
- Fisheries Technology Institute, Hakatajima Field Station, Japan Fisheries Research and Education Agency, Imabari 794-2305, Japan
| |
Collapse
|
3
|
Nyuji M, Hamaguchi M, Shimizu A, Isu S, Yoneda M, Matsuyama M. Development of sandwich enzyme-linked immunosorbent assays for chub mackerel Scomber japonicus gonadotropins and regulation of their secretion in female reproduction. Gen Comp Endocrinol 2022; 328:114103. [PMID: 35940318 DOI: 10.1016/j.ygcen.2022.114103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022]
Abstract
The pituitary gonadotropins (Gths), follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh), play critical roles in regulating gonadal development and sexual maturation in vertebrates. We developed non-competitive enzyme-linked immunosorbent assays (ELISAs) to measure Fsh and Lh in chub mackerel Scomber japonicus, which is a commercially important scombrid species. Mouse monoclonal antibodies specific for Fsh and Lh, and a rabbit polyclonal antibody against both Gths were produced by immunization with hormones purified from chub mackerel pituitaries. These monoclonal and polyclonal antibodies were used as capture and detection antibodies in the developed sandwich ELISAs. The ELISAs were reproducible, sensitive, and specific for chub mackerel Fsh and Lh. Parallelism between the standard curve and serial dilutions of chub mackerel serum and pituitary extract was observed for both Fsh and Lh ELISAs. Comparison between vitellogenic and immature females revealed that Fsh is secreted during vitellogenesis and Lh is barely released during immaturity. After gonadotropin-releasing hormone analog (GnRHa) injection, vitellogenic females showed increases in serum Lh, whereas serum levels of Fsh did not vary. Moreover, the serum steroid profiles revealed that estradiol-17β was continuously produced after GnRHa treatment, whereas 17,20β-dihydroxy-4-pregnen-3-one secretion was transiently induced. These results indicate that, in vitellogenic females, GnRHa stimulates the release of Lh, but not Fsh, which results in acceleration of vitellogenesis and induction of oocyte maturation via steroid production.
Collapse
Affiliation(s)
- Mitsuo Nyuji
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Nagasaki 851-2213, Japan.
| | - Masami Hamaguchi
- Fisheries Technology Institute, Hatsukaichi Field Station, Japan Fisheries Research and Education Agency, Hiroshima 739-0452, Japan
| | - Akio Shimizu
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Yokohama 236-8648, Japan
| | - Sayoko Isu
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Yokohama 236-8648, Japan
| | - Michio Yoneda
- Fisheries Technology Institute, Hakatajima Field Station, Japan Fisheries Research and Education Agency, Imabari 794-2305, Japan
| | - Michiya Matsuyama
- Aqua-Bioresource Innovation Center, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Hatef A, Rajeswari JJ, Unniappan S. Kisspeptin stimulates oocyte maturation, and food deprivation modulates the abundance of kisspeptin system in zebrafish gonads. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Zhou J, Wang W, Li Z, Zhang C, Wan Z, Sun S, Zeng B, Li M, Sun G. Metabolome and Transcriptome Analysis of Liver and Oocytes of Schizothorax o'connori Raised in Captivity. Front Genet 2021; 12:677066. [PMID: 34691140 PMCID: PMC8531413 DOI: 10.3389/fgene.2021.677066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Schizothorax o’connori (S. o’connori) is a representative tetraploid species in the subfamily Schizothoracinae and an important endemic fish in the Qinghai-Tibet Plateau. However, the domestication of S. o’connori remains challenging due to the lack of basic research. Here, we investigated the effects of artificial feeding on the oocytes and liver of S. o’connori by comparing the histological, metabolomic, and transcriptomic data. Histological results showed that the oocytes and liver of captive-reared S. o’connori had abnormal cell morphology. After comparison with the self-built database, a total of 233 metabolites were annotated. In oocytes, a total of 37 differentially accumulated metabolites (DAMs) were detected and two pathways were significantly enriched. There were obvious differences in the metabolites related to ovarian development, including pregnenolone and arachidonic acid. In liver, a total of 70 DAMs were detected and five pathways were significantly enriched. Based on the transcriptomic data, a total of 159 differentially expressed genes (DEGs) were significantly related with cell growth and death pathway in oocytes, while a total of 2841 DEGs were significantly related with 102 pathways in liver. Comparing the metabolomic and transcriptomic data showed that there were three common significant enrichment pathways in liver, including biosynthesis of unsaturated fatty acids, starch and sucrose metabolism, and fatty acid biosynthesis. These results showed that special attention should be given to the composition and intake of fatty acids during the artificial breeding of S. o’connori. In addition, many of metabolite-gene pairs were related to adenosine 5′-diphosphate, adenosine monophosphate, and pregnenolone. In summary, these data provide an overview of global metabolic and transcriptomic resources and broaden our understanding of captive-reared S. o’connori.
Collapse
Affiliation(s)
- Jianshe Zhou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Wanliang Wang
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Zhichao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Chi Zhang
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Zhiyi Wan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Shuaijie Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Benhe Zeng
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
6
|
Tenugu S, Pranoty A, Mamta SK, Senthilkumaran B. Development and organisation of gonadal steroidogenesis in bony fishes - A review. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2020.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Nyuji M, Hongo Y, Yoneda M, Nakamura M. Transcriptome characterization of BPG axis and expression profiles of ovarian steroidogenesis-related genes in the Japanese sardine. BMC Genomics 2020; 21:668. [PMID: 32993516 PMCID: PMC7526130 DOI: 10.1186/s12864-020-07080-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/18/2020] [Indexed: 11/10/2022] Open
Abstract
Background The clupeoid fishes are ecologically and commercially important fish species worldwide that exhibit a high level of population fluctuation, accompanied by alteration of reproductive traits. However, knowledge about their reproductive physiology in order to understand mechanisms underlying such population dynamics is limited. The endocrine system along with the brain–pituitary–gonadal (BPG) axis is critical for regulating reproduction. The aims of this study were to provide transcript data and genes related to the BPG axis, and to characterize the expression profiles of ovarian steroidogenesis-related genes in the Japanese sardine (Sardinops melanostictus, Clupeidae). Results RNA sequencing was performed using the sardine brain, pituitary, and gonad in both sexes. A total of 290,119 contigs were obtained and 115,173 non-redundant ORFs were annotated. The genes differentially expressed between ovary and testis were strongly associated with GO terms related to gamete production. The tissue-specific profile of the abundance of transcripts was characterized for the major regulators in the BPG axis, such as gonadotropin-releasing hormone, gonadotropin, and steroidogenic enzyme. By comparing between ovary and testis, out of eight different 17β-hydroxysteroid dehydrogenase (Hsd17b) genes identified, higher hsd17b7 expression was found in testis, whereas higher expression of hsd17b8, hsd17b10, hsd17b12a, and hsd17b12b was found in ovary. The cDNAs encoding key endocrine factors in the ovarian steroidogenic pathway were cloned, sequenced, and quantitatively assayed. In the pituitary, follicle-stimulating hormone beta peaked during vitellogenesis, while luteinizing hormone beta peaked at the completion of vitellogenesis. In the ovary, follicle-stimulating hormone receptor and luteinizing hormone receptor were upregulated from mid- to late phase of vitellogenesis. Furthermore, three steroidogenic enzyme genes (cyp11a1, cyp17a1, and cyp19a1a) gradually increased their expression during ovarian development, accompanying a rise in serum estradiol-17β, while 3β-hydroxysteroid dehydrogenase and steroidogenic acute regulatory protein did not change significantly. Conclusions This is the first report of deep RNA sequencing analysis of Japanese sardine, in which many key genes involved in the BPG axis were identified. Expression profiles of ovarian steroidogenesis-related genes provide a molecular basis of the physiological processes underlying ovarian development in the sardine. Our study will be a valuable resource for clarifying the molecular biology of clupeoid fishes.
Collapse
Affiliation(s)
- Mitsuo Nyuji
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Yokohama, 236-8648, Japan.
| | - Yuki Hongo
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Yokohama, 236-8648, Japan
| | - Michio Yoneda
- Hakatajima Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Kinoura, Imabari, Ehime, 794-2305, Japan
| | - Masahiro Nakamura
- Hakatajima Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Kinoura, Imabari, Ehime, 794-2305, Japan
| |
Collapse
|
8
|
Ohga H, Ito K, Matsumori K, Kimura R, Ohta K, Matsuyama M. Leptin stimulates gonadotropin release and ovarian development in marine teleost chub mackerel. Gen Comp Endocrinol 2020; 292:113442. [PMID: 32084348 DOI: 10.1016/j.ygcen.2020.113442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022]
Abstract
Leptin transmits information about energy stored in the periphery to the reproductive axis and is an essential signal for puberty initiation in mammals; however, to date, few studies have focused on the direct effects of leptin stimulation on reproductive factors in fish. This study demonstrated the effect of leptin stimulation on important reproductive factors and ovarian development in the marine teleost chub mackerel (Scomber japonicus). We prepared recombinant leptin and conducted functional analyses through in vitro bioassays using primary pituitary cells, long-term leptin treatment administered to pre-pubertal females, and intracerebroventricular (ICV) administration. The results showed that leptin stimulation strongly induced gonadotropin (follicle-stimulating hormone: FSH and luteinizing hormone: LH) secretion from pituitary cells collected from pre-pubertal females, and that long-term leptin treatment significantly promoted ovarian development and triggered pubertal onset. Furthermore, ICV administration of leptin did not affect kisspeptin gene expression but significantly upregulated gonadotropin-releasing hormone 1 (gnrh1), fshb and lhb gene expression in sexually immature females. These results strongly suggest leptin as an important signal for reproductive-axis activation in chub mackerel.
Collapse
Affiliation(s)
- Hirofumi Ohga
- Fisheries Research Institute of Karatsu, Faculty of Agriculture, Kyushu University, Saga 847-0132, Japan.
| | - Kosuke Ito
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Kojiro Matsumori
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Ryuto Kimura
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Kohei Ohta
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Michiya Matsuyama
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
9
|
Ohga H, Selvaraj S, Matsuyama M. The Roles of Kisspeptin System in the Reproductive Physiology of Fish With Special Reference to Chub Mackerel Studies as Main Axis. Front Endocrinol (Lausanne) 2018; 9:147. [PMID: 29670580 PMCID: PMC5894438 DOI: 10.3389/fendo.2018.00147] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/19/2018] [Indexed: 12/27/2022] Open
Abstract
Kisspeptin, a novel neuropeptide product of the Kiss1 gene, activates the G protein-coupled membrane receptor G protein-coupled receptor 54 (now termed Kiss1r). Over the last 15 years, the importance of the kisspeptin system has been the subject of much debate in the mammalian research field. At the heart of the debate is whether kisspeptin is an absolute upstream regulator of gonadotropin-releasing hormone secretion, as it has been proposed to be the master molecule in reproductive events and plays a special role not only during puberty but also in adulthood. The teleostean kisspeptin system was first documented in 2004. Although there have been a number of kisspeptin studies in various fish species, the role of kisspeptin in reproduction remains a subject of controversy and has not been widely recognized. There is an extensive literature on the physiological and endocrinological bases of gametogenesis in fish, largely derived from studying small, model fish species, and reports on non-model species are limited. The reason for this discrepancy is the technical difficulty inherent in developing rigorous experimental systems in many farmed fish species. We have already established methods for the full life-cycle breeding of a commercially important marine fish, the chub mackerel (cm), and are interested in understanding the reproductive function of kisspeptins from various perspectives. Based on a series of experiments clarifying the role of the brain-pituitary-gonad axis in modulating reproduction in cm, we theorize that the kisspeptin system plays an important role in the reproduction of this scombroid species. In this review article, we provide an overview of kisspeptin studies in cm, which substantially aids in elucidating the role of kisspeptins in fish reproduction.
Collapse
|
10
|
Moniruzzaman M, Mukherjee J, Das D, Chakraborty SB. Impact of physical aquatic parameters on the annual rhythmicity of sex steroid and cortisol and their interrelationship in two distantly related fish population. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2016.1275399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Joyita Mukherjee
- Ecological Modelling Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, India
| | - Debjit Das
- Department of Zoology, University of Calcutta, Kolkata, India
| | | |
Collapse
|
11
|
Lumayno SDP, Ohga H, Selvaraj S, Nyuji M, Yamaguchi A, Matsuyama M. Molecular characterization and functional analysis of pituitary GnRH receptor in a commercial scombroid fish, chub mackerel (Scomber japonicus). Gen Comp Endocrinol 2017; 247:143-151. [PMID: 28153577 DOI: 10.1016/j.ygcen.2017.01.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 10/20/2022]
Abstract
The gonadotropin-releasing hormone (GnRH) is essential during pubertal onset, for its regulation of the synthesis and release of pituitary gonadotropins. Its action is mediated by GnRH receptors (GnRHRs) in the pituitary gonadotrophs. Our previous study demonstrated that the chub mackerel brain expresses three GnRH forms (gnrh1, gnrh2, and gnrh3), and that only GnRH1 neurons innervate anterior pituitary regions. Furthermore, chub mackerel gnrh1 mRNA exhibited a significant increase at pubertal onset. The present study aimed to isolate the functional GnRHR form involved in chub mackerel puberty. The open reading frame of our cloned receptor encodes 428 amino acids and contains seven transmembrane domains. Phylogenetic analysis also indicated clustering with other teleost-type IIB GnRHRs, mainly those involved in reproduction. Reporter gene assay results showed that all four synthetic peptides (GnRH1, GnRH2, GnRH3, and GnRH analogue) bind to the cloned receptor. Three deduced GnRH ligands stimulated luteinizing hormone (LH) release from cultured pituitary cells in vitro. Receptor gene expression was mainly detected in the pituitary and showed an increasing trend in the developing gonadal stages of both sexes during the pubertal process; this process was synchronous with previous studies of follicle-stimulating hormone beta (fshβ) and lhβ gene expression in chub mackerel. These results suggest that the cloned receptor is likely involved in the regulation of pubertal onset in this species. Therefore, we have designated the receptor cmGnRHR1.
Collapse
Affiliation(s)
| | - Hirofumi Ohga
- Laboratory of Marine Biology, Kyushu University, Fukuoka 812-8581, Japan
| | - Sethu Selvaraj
- Laboratory of Marine Biology, Kyushu University, Fukuoka 812-8581, Japan
| | - Mitsuo Nyuji
- Laboratory of Marine Biology, Kyushu University, Fukuoka 812-8581, Japan
| | - Akihiko Yamaguchi
- Laboratory of Marine Biology, Kyushu University, Fukuoka 812-8581, Japan
| | - Michiya Matsuyama
- Laboratory of Marine Biology, Kyushu University, Fukuoka 812-8581, Japan.
| |
Collapse
|
12
|
Nyuji M, Kodama R, Kato K, Yamamoto S, Yamaguchi A, Matsuyama M. Gonadal Development and Gonadotropin Gene Expression During Puberty in Cultured Chub Mackerel (Scomber japonicus). Zoolog Sci 2014; 31:398-406. [DOI: 10.2108/zs130254] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Subcutaneous administration of Kiss1 pentadecapeptide accelerates spermatogenesis in prepubertal male chub mackerel (Scomber japonicus). Comp Biochem Physiol A Mol Integr Physiol 2013; 166:228-36. [DOI: 10.1016/j.cbpa.2013.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 01/14/2023]
|
14
|
Selvaraj S, Ohga H, Kitano H, Nyuji M, Yamaguchi A, Matsuyama M. Peripheral Administration of Kiss1 Pentadecapeptide Induces Gonadal Development in Sexually Immature Adult Scombroid Fish. Zoolog Sci 2013; 30:446-54. [DOI: 10.2108/zsj.30.446] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Sethu Selvaraj
- Laboratory of Marine Biology, Kyushu University, Fukuoka 812-8581, Japan
| | - Hirofumi Ohga
- Laboratory of Marine Biology, Kyushu University, Fukuoka 812-8581, Japan
| | - Hajime Kitano
- Laboratory of Marine Biology, Kyushu University, Fukuoka 812-8581, Japan
| | - Mitsuo Nyuji
- Laboratory of Marine Biology, Kyushu University, Fukuoka 812-8581, Japan
| | - Akihiko Yamaguchi
- Laboratory of Marine Biology, Kyushu University, Fukuoka 812-8581, Japan
| | - Michiya Matsuyama
- Laboratory of Marine Biology, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
15
|
Ohga H, Kaneko K, Shimizu A, Kitano H, Selvaraj S, Nyuji M, Adachi H, Yamaguchi A, Matsuyama M. Steroidogenic and maturation-inducing potency of native gonadotropic hormones in female chub mackerel, Scomber japonicus. Reprod Biol Endocrinol 2012; 10:71. [PMID: 22950645 PMCID: PMC3495025 DOI: 10.1186/1477-7827-10-71] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 08/30/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The gonadotropins (GtHs), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are produced in the pituitary gland and regulates gametogenesis through production of gonadal steroids. However, respective roles of two GtHs in the teleosts are still incompletely characterized due to technical difficulties in the purification of native GtHs. METHODS Native FSH and LH were purified from the pituitaries of adult chub mackerel, Scomber japonicus by anion-exchange chromatography and immunoblotting using specific antisera. The steroidogenic potency of the intact chub mackerel FSH (cmFSH) and LH (cmLH) were evaluated in mid- and late-vitellogenic stage follicles by measuring the level of gonadal steroids, estradiol-17beta (Ε2) and 17,20beta-dihydroxy-4-pregnen-3-one (17,20beta-P). In addition, we evaluated the maturation-inducing potency of the GtHs on same stage follicles. RESULTS Both cmFSH and cmLH significantly stimulated E2 production in mid-vitellogenic stage follicles. In contrast, only LH significantly stimulated the production of 17,20beta-P in late-vitellogenic stage follicles. Similarly, cmLH induced final oocyte maturation (FOM) in late-vitellogenic stage follicles. CONCLUSIONS Present results indicate that both FSH and LH may regulate vitellogenic processes, whereas only LH initiates FOM in chub mackerel.
Collapse
Affiliation(s)
- Hirofumi Ohga
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Kensuke Kaneko
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Akio Shimizu
- National Research Institute of Fisheries Science, Fisheries Research Agency, Kanazawa, Yokohama 236-8648, Japan
| | - Hajime Kitano
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Sethu Selvaraj
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Mitsuo Nyuji
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Hayato Adachi
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Akihiko Yamaguchi
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Michiya Matsuyama
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
16
|
Selvaraj S, Kitano H, Amano M, Ohga H, Yoneda M, Yamaguchi A, Shimizu A, Matsuyama M. Increased expression of kisspeptin and GnRH forms in the brain of scombroid fish during final ovarian maturation and ovulation. Reprod Biol Endocrinol 2012; 10:64. [PMID: 22925208 PMCID: PMC3453514 DOI: 10.1186/1477-7827-10-64] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/22/2012] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Kisspeptins (Kiss) are prime players in the control of reproductive function through their regulation of gonadotropin-releasing hormone (GnRH) expression in the brain. The experimental scombroid fish, chub mackerel (Scomber japonicus) expresses two kiss (kiss1 and kiss2) and three gnrh (gnrh1, gnrh2, and gnrh3) forms in the brain. In the present study, we analyzed expression changes of kiss and gnrh mRNAs in the brain and corresponding GnRH peptides in the brain and pituitary during final ovarian maturation (FOM) and ovulation. METHODS Female fish possessing late vitellogenic oocytes were injected with GnRH analogue to induce FOM and ovulation. Fish were observed for daily spawning activities and sampled one week post-injection at germinal vesicle migration (GVM), oocyte hydration, ovulation, and post-ovulatory time periods. Changes in relative mRNA levels of kiss and gnrh forms in the brain were determined using quantitative real-time PCR. Changes in GnRH peptides in the brain and pituitary were analyzed using time-resolved fluoroimmunoassay. RESULTS Both kiss1 and kiss2 mRNA levels in the brain were low at late vitellogenic stage and increased significantly during the GVM period. However, kiss1 mRNA levels decreased during oocyte hydration before increasing again at ovulatory and post-ovulatory periods. In contrast, kiss2 mRNA levels decreased at ovulatory and post-ovulatory periods. Levels of gnrh1 mRNA in the brain increased only during post-ovulatory period. However, levels of gnrh2 and gnrh3 mRNAs were elevated during GVM and then, decreased during oocyte hydration before increasing again at ovulatory period. During post-ovulatory period, both gnrh2 and gnrh3 mRNA levels declined. Peptide levels of all three GnRH forms in the brain were elevated during GVM and oocyte hydration; their levels were significantly lower during late vitellogenic, ovulatory, and post-ovulatory periods. In contrast, pituitary GnRH peptide levels did not show any significant fluctuations, with the GnRH1 peptide levels being many-fold higher than the GnRH2 and GnRH3 forms. CONCLUSION The results indicate increased expression of multiple Kiss and GnRH forms in the brain and suggest their possible involvement in the regulation of FOM and ovulation in captive female chub mackerel.
Collapse
Affiliation(s)
- Sethu Selvaraj
- Laboratory of Marine Biology, Kyushu University, Fukuoka, 812-8581, Japan
| | - Hajime Kitano
- Laboratory of Marine Biology, Kyushu University, Fukuoka, 812-8581, Japan
| | - Masafumi Amano
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Hirofumi Ohga
- Laboratory of Marine Biology, Kyushu University, Fukuoka, 812-8581, Japan
| | - Michio Yoneda
- Fisheries Research Agency, Kanazawa, Yokohama, 236-8648, Japan
| | - Akihiko Yamaguchi
- Laboratory of Marine Biology, Kyushu University, Fukuoka, 812-8581, Japan
| | - Akio Shimizu
- Fisheries Research Agency, Kanazawa, Yokohama, 236-8648, Japan
| | - Michiya Matsuyama
- Laboratory of Marine Biology, Kyushu University, Fukuoka, 812-8581, Japan
| |
Collapse
|
17
|
Nyuji M, Selvaraj S, Kitano H, Ohga H, Yoneda M, Shimizu A, Kaneko K, Yamaguchi A, Matsuyama M. Changes in the expression of pituitary gonadotropin subunits during reproductive cycle of multiple spawning female chub mackerel Scomber japonicus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:883-897. [PMID: 22109677 DOI: 10.1007/s10695-011-9576-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 11/07/2011] [Indexed: 05/31/2023]
Abstract
The endocrine regulation of reproduction in a multiple spawning fish with an asynchronous-type ovary remains largely unknown. The objectives of this study were to monitor changes in the mRNA expression of three gonadotropin (GtH) subunits (GPα, FSHβ, and LHβ) during the reproductive cycle of the female chub mackerel Scomber japonicus. Cloning and subsequent sequence analysis revealed that the cDNAs of chub mackerel GPα, FSHβ, and LHβ were 658, 535, and 599 nucleotides in length and encoded 117, 115, and 147 amino acids, respectively. We applied a quantitative real-time PCR assay to quantify the mRNA expression levels of these GtH subunits. During the seasonal reproductive cycle, FSHβ mRNA levels remained high during the vitellogenic stages, while GPα and LHβ mRNA levels peaked at the end of vitellogenesis. The expression of all three GtH subunits decreased during the post-spawning period. These results suggest that follicle-stimulating hormone (FSH) is involved in vitellogenesis, while luteinizing hormone (LH) functions during final oocyte maturation (FOM). Both GPα and FSHβ mRNA levels remained high during the FOM stages of the spawning cycle and increased further just after spawning. Thus, FSH synthesis may be strongly activated just after spawning to accelerate vitellogenesis in preparation for the next spawning. Alternatively, LHβ mRNA levels declined during hydration and then increased after ovulation. This study demonstrates that chub mackerel are a good model for investigating GtH functions in multiple spawning fish.
Collapse
Affiliation(s)
- Mitsuo Nyuji
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Selvaraj S, Kitano H, Fujinaga Y, Ohga H, Yoneda M, Yamaguchi A, Shimizu A, Matsuyama M. Molecular characterization, tissue distribution, and mRNA expression profiles of two Kiss genes in the adult male and female chub mackerel (Scomber japonicus) during different gonadal stages. Gen Comp Endocrinol 2010; 169:28-38. [PMID: 20691652 DOI: 10.1016/j.ygcen.2010.07.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 07/05/2010] [Accepted: 07/20/2010] [Indexed: 10/19/2022]
Abstract
Kisspeptins, encoded by the Kiss1 gene, have emerged as key modulators of reproduction in mammals. In contrast to the placental mammals, some teleosts express two Kiss genes, Kiss1 and Kiss2. In the present study, full-length cDNAs of Kiss1 and Kiss2 in the chub mackerel were cloned and sequenced. Chub mackerel Kiss1 and Kiss2 cDNAs encode 105 and 123 amino acids, respectively. A comparison of the deduced amino acid sequences of chub mackerel Kiss1 and Kiss2 with those of other vertebrate species showed a high degree of conservation only in the kisspeptin-10 region (Kp-10). The Kp-10 of chub mackerel Kiss1 (YNFNSFGLRY) and Kiss2 (FNFNPFGLRF) showed variations at three amino acids. Tissue distribution analysis using quantitative real-time PCR (qRT-PCR) revealed that the Kiss1 and Kiss2 transcripts were expressed in different tissues of adult chub mackerel. In addition, their levels in the adipose tissue exhibited sexually dimorphic expression. Further, to have a basic understanding on the involvement of Kiss1 and Kiss2 in the seasonal gonadal development, their relative mRNA expression profiles in the brain, pituitary, and gonads at different gonadal stages were analyzed using qRT-PCR. Kiss1 and Kiss2 levels in the brain showed a differential expression profile between male and female fish. In males, Kiss1 and Kiss2 levels gradually decreased from the immature stage to spermiation and reached a minimal level during the post-spawning period. In contrast, Kiss1 levels in the brain of females did not vary significantly among the different gonadal stages. However, Kiss2 levels fluctuated as that of males, gradually declining from the immature stage to the post-spawning period. The pituitary Kiss1 levels did not show significant fluctuations. However, Kiss1 levels in the gonads were highly elevated during spermiation and late vitellogenesis compared to the immature and post-spawning period. These results suggest the possible involvement of two Kiss genes in the brain and Kiss1 in the gonads of chub mackerel during seasonal gonadal development.
Collapse
Affiliation(s)
- Sethu Selvaraj
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Tveiten H, Frantzen M, Scott AM, Scott AP. Synthesis of 17,20beta,21-trihydroxypregn-4-en-3-one by ovaries of reproductively mature Atlantic cod Gadus morhua. JOURNAL OF FISH BIOLOGY 2010; 77:33-53. [PMID: 20646137 DOI: 10.1111/j.1095-8649.2010.02655.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Atlantic cod Gadus morhua ovaries were incubated in vitro with tritiated 17-hydroxypregn-4-ene-3,20-dione (17-P) to determine whether 17,20beta-dihydroxypregn-4-en-3-one (17,20beta-P) or 17,20beta, 21-trihydroxypregn-4-en-3-one (17,20beta,21-P), or both, were more likely to be the steroid responsible for inducing oocyte final maturation (i.e. resumption of meiosis). Only 17,20beta,21-P was produced, in addition to 11-deoxycortisol (17,21-P), which is intermediate between 17-P and 17,20beta,21-P. Also, the 5beta-reduced forms of 17-P, 17,21-P and 17,20beta,21-P were all found. Some sulphation of 21-hydroxylated steroids was demonstrated. The ability of female G. morhua to make 17,20beta,21-P but not 17,20beta-P was confirmed by radioimmunoassay of plasma samples from spawning fish. Although small amounts of 17,20beta-P immunoreactivity were detected in a few plasma samples, this was shown, by thin-layer chromatography, to be mostly due to cross-reaction with other unidentified compounds. The evidence strongly suggests that 17,20beta,21-P is more likely than 17,20beta-P to be the maturation-inducing steroid in G. morhua.
Collapse
Affiliation(s)
- H Tveiten
- Nofima Marin, Tromsø, Postboks 6122, 9291 Tromsø, Norway.
| | | | | | | |
Collapse
|
20
|
Selvaraj S, Kitano H, Fujinaga Y, Amano M, Takahashi A, Shimizu A, Yoneda M, Yamaguchi A, Matsuyama M. Immunological characterization and distribution of three GnRH forms in the brain and pituitary gland of chub mackerel (Scomber japonicus). Zoolog Sci 2010; 26:828-39. [PMID: 19968470 DOI: 10.2108/zsj.26.828] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The presence of three gonadotropin-releasing hormone (GnRH) forms in the brain of the chub mackerel, Scomber japonicus, namely, salmon GnRH (sGnRH), chicken GnRH-II (cGnRH-II), and seabream GnRH (sbGnRH), was confirmed by combined high performance liquid chromatography (HPLC) and time-resolved fluoroimmunoassay (TR-FIA). Immunocytochemical localization of the three GnRH forms in the brain was Investigated by using specific antisera, to elucidate possible roles of each GnRH form in reproduction in this species, and double immunolabeling was used to localize GnRH-ir (immunoreactive) fibers Innervating the pituitary. sGnRH-ir neurons were localized in the ventral olfactory bulb and terminal nerve ganglion region. Further, sGnRH-ir fibers were found in different regions of the brain, with prominent fibers running in parallel in the preoptic area (POA) without entering the pituitary. cGnRH-II-ir cell bodies were observed only in the midbrain tegmentum region, with a wide distribution of fibers, which were dense in the midbrain tegmentum and spinal cord. SbGnRH-ir cell bodies were localized in the nucleus preopticus of the POA, with fibers in the olfactory bulb, POA, and hypothalamus. Among the three GnRH forms, only SbGnRH-ir fibers innervated the pituitary gland from the preoptic-hypothalamic region, targeting follicle stimulating hormone (FSH) and luteinizing hormone (LH)-producing cells in the proximal pars distalis, as demonstrated by double immunocytochemistry. The localization of the GnRH-ir system was similar in male and female fish. These results demonstrate that multiple GnRH forms exist in the brain of the chub mackerel and suggest that they serve different functions, with SbGnRH having a significant role in reproduction in stimulating FSH- and LH-producing cells, and sGnRH and cGnRH-II serving as neurotransmitters or neuromodulators.
Collapse
Affiliation(s)
- Sethu Selvaraj
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yazawa R, Takeuchi Y, Higuchi K, Yatabe T, Kabeya N, Yoshizaki G. Chub mackerel gonads support colonization, survival, and proliferation of intraperitoneally transplanted xenogenic germ cells. Biol Reprod 2010; 82:896-904. [PMID: 20089885 DOI: 10.1095/biolreprod.109.081281] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The production of xenogenic gametes from large-bodied, commercially important marine fish species in closely related smaller host fish species with short generation times may enable rapid and simple seed production of the target species. As a first step toward this goal, we assessed the suitability of chub mackerel, Scomber japonicus, as a small-bodied recipient species for xenogenic spermatogonial transplantation. Histological observation of the early gonadal development of chub mackerel larvae and transplantation of fluorescent-labeled spermatogonia from Nibe croaker, Nibea mitsukurii, revealed that 5.3-mm chub mackerel larvae were suitable recipients for successful transplantation. Intraperitoneally transplanted xenogenic spermatogonia efficiently colonized the gonads of these recipient larvae, and donor-derived Nibe croaker germ cells proliferated rapidly soon after colonization. Moreover, gonadal soma-derived growth factor (gsdf) mRNA, a gonadal somatic cell marker, was expressed in recipient-derived cells surrounding the incorporated donor-derived germ cells, suggesting that donor-derived germ cells had settled at an appropriate location in the recipient gonad. Our data show that xenogenic spermatogonial transplantation was successful in chub mackerel and that the somatic microenvironment of the chub mackerel gonad can support the colonization, survival, and proliferation of intraperitoneally transplanted xenogenic germ cells derived from a donor species of a different taxonomic family.
Collapse
Affiliation(s)
- Ryosuke Yazawa
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|