1
|
Wang J, Gao Z, Liu S, Hu Y, Zhang L, Deng B, Sha Z, Ru X. Relaxin-like gonad-stimulating peptide promotes gamete maturation and spawning in the sea cucumber Apostichopus japonicus. Anim Reprod Sci 2025; 275:107820. [PMID: 40068350 DOI: 10.1016/j.anireprosci.2025.107820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/07/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025]
Abstract
Apostichopus japonicus is a crucial aquaculture species in Asia, and seedling production is fundamental to its cultivation. Nevertheless, the reproductive behavior of this species remains difficult to regulate artificially. Although the spawning mode of sea cucumbers is well documented, the endocrine mechanisms that regulate the synchronized processes of oocyte maturation and spawning behavior remain poorly understood. In this study, the effects of a recombinant relaxin-like gonad-stimulating peptide (RGP) on oocyte maturation and parental spawning behavior were investigated. The recombinant RGP derived from A. japonicus was effectively expressed using the Pichia pastoris system, and its biological activity was validated through mass spectrometry analysis. Results indicated that the RGP promoted oocyte maturation by inducing the rupture of germinal vesicles. Behavioral studies revealed that the RGP enhanced gamete release. Furthermore, the gametes induced by the RGP did not differ significantly from those released spontaneously in terms of progeny quality and quantity. These findings suggested that the recombinant RGP could be utilized in the breeding of A. japonicus seedlings. They also had substantial implications for elucidating the reproductive behavior of this species and for the artificial induction of seedling production.
Collapse
Affiliation(s)
- Jiaze Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhaoming Gao
- Binzhou Ocean Development Research Institute, Binzhou 256600, China
| | - Shuai Liu
- Binzhou Ocean Development Research Institute, Binzhou 256600, China
| | - Yongchao Hu
- Dongying Municipal Bureau of Marine Development and Fisheries, Dongying 257024, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Beini Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhenxia Sha
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xiaoshang Ru
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
2
|
Wu H, Praveen P, Handley TNG, Chandrashekar C, Cummins SF, Bathgate RAD, Hossain MA. Total Chemical Synthesis of Aggregation-Prone Disulfide-Rich Starfish Peptides. Chemistry 2024; 30:e202400933. [PMID: 38609334 DOI: 10.1002/chem.202400933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
A relaxin-like gonad-stimulating peptide (RGP), Aso-RGP, featuring six cysteine residues, was identified in the Crown-of-Thorns Starfish (COTS, Acanthaster cf. solaris) and initially produced through recombinant yeast expression. This method yielded a single-chain peptide with an uncleaved C-peptide (His Tag) and suboptimal purity. Our objective was to chemically synthesize Aso-RGP in its mature form, comprising two chains (A and B) and three disulfide bridges, omitting the C-peptide. Furthermore, we aimed to synthesize a newly identified relaxin-like peptide, Aso-RLP2, from COTS, which had not been previously synthesized. This paper reports the first total chemical synthesis of Aso-RGP and Aso-RLP2. Aso-RGP synthesis proceeded without major issues, whereas the A-chain of Aso-RLP2, in its reduced and unfolded state with two free thiols, presented considerable challenges. These were initially marked by "messy" RP-HPLC profiles, typically indicative of synthesis failure. Surprisingly, oxidizing the A-chain significantly improved the RP-HPLC profile, revealing the main issue was not synthesis failure but the peptide's aggregation tendency, which initially obscured analysis. This discovery highlights the critical need to account for aggregation in peptide synthesis and analysis. Ultimately, our efforts led to the successful synthesis of both peptides with purities exceeding 95 %.
Collapse
Affiliation(s)
- Hongkang Wu
- The Florey, The University of Melbourne, Victoria, Australia
| | - Praveen Praveen
- The Florey, The University of Melbourne, Victoria, Australia
| | | | | | - Scott F Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Queensland, Australia
| | - Ross A D Bathgate
- The Florey, The University of Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Victoria, Australia
| | - Mohammed Akhter Hossain
- The Florey, The University of Melbourne, Victoria, Australia
- School of Chemistry, The University of Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Feng Y, Piñon Gonzalez VM, Lin M, Egertová M, Mita M, Elphick MR. Localization of relaxin-like gonad-stimulating peptide expression in starfish reveals the gonoducts as a source for its role as a regulator of spawning. J Comp Neurol 2023; 531:1299-1316. [PMID: 37212624 PMCID: PMC10952978 DOI: 10.1002/cne.25496] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/17/2023] [Accepted: 04/26/2023] [Indexed: 05/23/2023]
Abstract
Oocyte maturation and gamete release (spawning) in starfish are triggered by relaxin-like gonad-stimulating peptide (RGP), a neuropeptide that was first isolated from the radial nerve cords of these animals. Hitherto, it has generally been assumed that the radial nerve cords are the source of RGP that triggers spawning physiologically. To investigate other sources of RGP, here we report the first comprehensive anatomical analysis of its expression, using both in situ hybridization and immunohistochemistry to map RGP precursor transcripts and RGP, respectively, in the starfish Asterias rubens. Cells expressing RGP precursor transcripts were revealed in the ectoneural epithelium of the radial nerve cords and circumoral nerve ring, arm tips, tube feet, cardiac stomach, pyloric stomach, and, most notably, gonoducts. Using specific antibodies to A. rubens RGP, immunostaining was revealed in cells and/or fibers in the ectoneural region of the radial nerve cords and circumoral nerve ring, tube feet, terminal tentacle and other arm tip-associated structures, body wall, peristomial membrane, esophagus, cardiac stomach, pyloric stomach, pyloric caeca, and gonoducts. Our discovery that RGP is expressed in the gonoducts of A. rubens proximal to its gonadotropic site of action in the gonads is important because it provides a new perspective on how RGP may act as a gonadotropin in starfish. Thus, we hypothesize that it is the release of RGP from the gonoducts that triggers gamete maturation and spawning in starfish, while RGP produced in other parts of the body may regulate other physiological/behavioral processes.
Collapse
Affiliation(s)
- Yuling Feng
- School of Biological & Behavioural SciencesQueen Mary University of LondonLondonUK
| | | | - Ming Lin
- School of Biological & Behavioural SciencesQueen Mary University of LondonLondonUK
| | - Michaela Egertová
- School of Biological & Behavioural SciencesQueen Mary University of LondonLondonUK
| | - Masatoshi Mita
- Department of BiochemistryShowa University School of MedicineTokyoJapan
| | - Maurice R. Elphick
- School of Biological & Behavioural SciencesQueen Mary University of LondonLondonUK
| |
Collapse
|
4
|
Mita M. Relaxin-like Gonad-Stimulating Peptides in Asteroidea. Biomolecules 2023; 13:781. [PMID: 37238650 PMCID: PMC10216564 DOI: 10.3390/biom13050781] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Starfish relaxin-like gonad-stimulating peptide (RGP) is the first identified peptide hormone with gonadotropin-like activity in invertebrates. RGP is a heterodimeric peptide, comprising A and B chains with disulfide cross-linkages. Although RGP had been named a gonad-stimulating substance (GSS), the purified peptide is a member of relaxin-type peptide family. Thus, GSS was renamed as RGP. The cDNA of RGP encodes not only the A and B chains, but also signal and C-peptides. After the rgp gene is translated as a precursor, mature RGP is produced by eliminating the signal and C-peptides. Hitherto, twenty-four RGP orthologs have been identified or predicted from starfish in the orders Valvatida, Forcipulatida, Paxillosida, Spinulosida, and Velatida. The molecular evolution of the RGP family is in good accordance with the phylogenetic taxonomy in Asteroidea. Recently, another relaxin-like peptide with gonadotropin-like activity, RLP2, was found in starfish. RGP is mainly present in the radial nerve cords and circumoral nerve rings, but also in the arm tips, the gonoducts, and the coelomocytes. RGP acts on ovarian follicle cells and testicular interstitial cells to induce the production of 1-methyladenine (1-MeAde), a starfish maturation-inducing hormone. RGP-induced 1-MeAde production is accompanied by an increase in intracellular cyclic AMP levels. This suggests that the receptor for RGP (RGPR) is a G protein-coupled receptor (GPCR). Two types of GPCRs, RGPR1 and RGPR2, have been postulated as candidates. Furthermore, 1-MeAde produced by RGP not only induces oocyte maturation, but also induces gamete shedding, possibly by stimulating the secretion of acetylcholine in the ovaries and testes. Thus, RGP plays an important role in starfish reproduction, but its secretion mechanism is still unknown. It has also been revealed that RGP is found in the peripheral adhesive papillae of the brachiolaria arms. However, gonads are not developed in the larvae before metamorphosis. It may be possible to discover new physiological functions of RGP other than gonadotropin-like activity.
Collapse
Affiliation(s)
- Masatoshi Mita
- Department of Biochemistry, Showa University School of Medicine, Hatanodai 8-5-1, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
5
|
Katayama H, Mita M. The C-terminally amidated relaxin-like gonad-stimulating peptide in the starfish Astropecten scoparius. Gen Comp Endocrinol 2023; 334:114226. [PMID: 36731602 DOI: 10.1016/j.ygcen.2023.114226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023]
Abstract
A relaxin-like gonad-stimulating peptide (RGP) in starfish was the first identified invertebrate gonadotropin, consisting of A- and B-chain. Recently, an RGP ortholog (Asc-RGP) from Astropecten scoparius in the order Paxillosida was found to harbor an amidation signal (Gly-Arg) at the C-terminus of the B-chain (Mita et al., 2020a). Two cleavage sites were also predicted within the signal peptide of the Asc-RGP precursor. Thus, four kinds of analogs (Asc-RGP-NH2(S), Asc-RGP-GR(S), Asc-RGP- NH2(L), Asc-RGP-GR(L) were hypothesized as natural Asc-RGPs. To identify the natural Asc-RGP, an extract of radial nerve cords from A. scoparius was analyzed using reverse-phase high-performance liquid chromatography and MALDI-TOF-mass spectrometry. The molecular weight of Asc-RGP was 4585.3, and those of A- and B-chains were 2511.8 and 2079.8, respectively. This strongly suggests that natural RGP in A. scoparius is Asc-RGP-NH2(S). Asc-RGP-NH2(S) stimulated 1-methyladenine and cyclic AMP production in isolated ovarian follicle cells of A. scoparius. On the other hand, the concentrations of four synthetic Asc-RGP analogs required for the induction of spawning in 50% of ovarian fragments were almost the same. The size and C-terminal amidation of the B-chain might not be important for spawning-inducing activity. C-terminally amidated RGPs in the B-chain were also observed in other species of starfish belonging to the order Paxillosida, particularly the family Astropectinidae, but not the family Luidiidae.
Collapse
Affiliation(s)
- Hidekazu Katayama
- Department of Bioengineering, School of Engineering, Tokai University, 4-1-1, Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Masatoshi Mita
- Department of Biochemistry, Showa University School of Medicine, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| |
Collapse
|
6
|
Mita M, Katayama H, Yamamoto K, Shibata Y, Kiyomoto M. A Relaxin-Like Gonad-Stimulating Peptide Appears in the Early Development of the Starfish Patiria pectinifera. Zoolog Sci 2023; 40:7-12. [PMID: 36744704 DOI: 10.2108/zs220058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/13/2022] [Indexed: 01/18/2023]
Abstract
Relaxin-like gonad-stimulating peptide (RGP) is a hormone with gonadotropin-like activity in starfish. This study revealed that spawning inducing activity was detected in an extract of brachiolaria larvae of Patiria pectinifera. Spawning inducing activity in the extract was due to P. pectinifera RGP (PpeRGP), not 1-methyladenine. The expression of PpeRGP mRNA was also found in brachiolaria. Immunohistochemical observation with specific antibodies for PpeRGP showed that PpeRGP was distributed in the peripheral adhesive papilla of the brachiolaria arms. In contrast, PpeRGP was not detected in the adult rudiment or ciliary band regions, which are present in the neural system. These findings strongly suggest that RGP exists in the larvae before metamorphosis. Because gonads are not developed in starfish larvae, it seems likely that RGP plays another role other than gonadotropic action in the early development of starfish.
Collapse
Affiliation(s)
- Masatoshi Mita
- Department of Biochemistry, Showa University School of Medicine, Shinagawa-ku, Tokyo 142-8555, Japan,
| | - Hidekazu Katayama
- Department of Bioengineering, School of Engineering, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | - Kazutoshi Yamamoto
- Department of Biology, Faculty of Education and Integrated Sciences, Center for Advanced Biomedical Sciences, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yasushi Shibata
- Department of Life and Health Science, Faculty of Life & Environmental Sciences, Teikyo University of Science, Uenohara, Yamanashi 409-0193, Japan
| | - Masato Kiyomoto
- Tateyama Marine Laboratory, Marine and Coastal Research Center, Ochanomizu University, Tateyama, Chiba 294-0301, Japan
| |
Collapse
|
7
|
Mita M, Elphick MR, Katayama H. A specific and sensitive enzyme-linked immunosorbent assay for measurement of relaxin-like gonad-stimulating peptide in the starfish Asterias rubens. Gen Comp Endocrinol 2021; 310:113831. [PMID: 34089706 DOI: 10.1016/j.ygcen.2021.113831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022]
Abstract
A relaxin-like gonad-stimulating peptide (RGP) acts as a gonadotropic hormone in starfish. In this study, antibodies to Asterias rubens RGP (AruRGP) were used for the development of a specific and sensitive enzyme-linked immunosorbent assay (ELISA) to measure AruRGP. Biotin-conjugated RGP (biotin-AruRGP) that binds to peroxidase-conjugated streptavidin was synthesized chemically so that it could be specifically detected using 3, 3', 5, 5'-tetramethylbenzidine (TMB)/hydrogen peroxide as a substrate. Similar to AruRGP, biotin-AruRGP bound to AruRGP antibodies. In binding experiments with biotin-AruRGP using wells coated with AruRGP antibodies, a displacement curve was obtained using serial dilutions of AruRGP. Using this ELISA system, AruRGP could be measured in the range 0.01-5.0 pmol per 50 µl test solution. Furthermore, 0.22 ± 0.03 and 0.20 ± 0.04 pmol AruRGP/mg wet weight tissue were detected in the radial nerve cords and circumoral nerve-rings of A. rubens, respectively. Smaller amounts of AruRGP were detected in tube feet, pyloric stomach and cardiac stomach but AruRGP was not detected in pyloric caeca, ovaries and testes. Analysis of the specificity of the AruRGP antibodies revealed that the A- and B-chains of AruRGP, Patiria pectinifera RGP, Aphelasterias japonica RGP, and human relaxin exhibit little or no cross-reactivity in the ELISA. We conclude, therefore, that we have successfully generated an ELISA system that is highly sensitive and specific for detection of AruRGP.
Collapse
Affiliation(s)
- Masatoshi Mita
- Department of Biochemistry, Showa University School of Medicine, Hatanodai 8-5-1, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Maurice R Elphick
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London E1 4NS, UK
| | - Hidekazu Katayama
- Department of Applied Biochemistry, School of Engineering, Tokai University, 4-1-1, Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| |
Collapse
|
8
|
Mita M, Osugi T, Matsubara S, Kawada T, Satake H, Katayama H. A relaxin-like gonad-stimulating peptide identified from the starfish Astropecten scoparius. Mol Reprod Dev 2020; 88:34-42. [PMID: 33244845 DOI: 10.1002/mrd.23444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 11/12/2022]
Abstract
A relaxin-like gonad-stimulating peptide (RGP) in starfish was the first identified invertebrate gonadotropin responsible for final gamete maturation. An RGP ortholog was newly identified from Astropecten scoparius of the order Paxillosida. The A. scoparius RGP (AscRGP) precursor is encoded by a 354 base pair open reading frame and is a 118 amino acid (aa) protein consisting of a signal peptide (26 aa), B-chain (21 aa), C-peptide (47 aa), and A-chain (24 aa). There are three putative processing sites (Lys-Arg) between the B-chain and C-peptide, between the C-peptide and A-chain, and within the C-peptide. This structural organization revealed that the mature AscRGP is composed of A- and B-chains with two interchain disulfide bonds and one intrachain disulfide bond. The C-terminal residues of the B-chain are Gln-Gly-Arg, which is a potential substrate for formation of an amidated C-terminal Gln residue. Non-amidated (AscRGP-GR) and amidated (AscRGP-NH2 ) peptides were chemically synthesized and their effect on gamete shedding activity was examined using A. scoparius ovaries. Both AscRGP-GR and AscRGP-NH2 induced oocyte maturation and ovulation in similar dose-dependent manners. This is the first report on a C-terminally amidated functional RGP. Collectively, these results suggest that AscRGP-GR and AscRGP-NH2 act as a natural gonadotropic hormone in A. scoparius.
Collapse
Affiliation(s)
- Masatoshi Mita
- Department of Biochemistry, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Soraku-gun, Kyoto, Japan
| | - Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Soraku-gun, Kyoto, Japan
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Soraku-gun, Kyoto, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Soraku-gun, Kyoto, Japan
| | - Hidekazu Katayama
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa, Japan
| |
Collapse
|
9
|
Mita M, Matsubara S, Osugi T, Shiraishi A, Wada A, Satake H. A novel G protein-coupled receptor for starfish gonadotropic hormone, relaxin-like gonad-stimulating peptide. PLoS One 2020; 15:e0242877. [PMID: 33226996 PMCID: PMC7682835 DOI: 10.1371/journal.pone.0242877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Gonadotropic hormones play important regulatory roles in reproduction. Relaxin-like gonad-stimulating peptide (RGP) is a gonadotropin-like hormone in starfish. However, a receptor for RGP remains to be identified. Here, we describe the identification of an authentic receptor for RGP (RGPR) in the starfish, Patiria pectinifera. A binding assay using radioiodinated P. pectinifera RGP (PpeRGP) revealed that RGPR was expressed in ovarian follicle cells. A RGPR candidate was identified by homology-searching of transcriptome data of P. pectinifera follicle cells. Based on the contig sequences, a putative 947-amino acid PpeRGPR was cloned from follicle cells. Like the vertebrate relaxin family peptide receptors (RXFP 1 and 2), PpeRGPR was a G protein-coupled receptor that harbored a low-density lipoprotein-receptor class A motif and leucine-rich repeat sequences in the extracellular domain of the N-terminal region. Sf9 cells transfected with Gαq16-fused PpeRGPR activated calcium ion mobilization in response to PpeRGP, but not to RGP of another starfish Asterias amurensis, in a dose-dependent fashion. These results confirmed the species-specific reactivity of RGP and the cognate receptor. Thus, the present study provides evidence that PpeRGPR is a specific receptor for PpeRGP. To the best of our knowledge, this is the first report on the identification of a receptor for echinoderm RGP.
Collapse
Affiliation(s)
- Masatoshi Mita
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Azumi Wada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| |
Collapse
|
10
|
Mita M, Elphick MR, Katayama H. Effect of chimeric relaxin-like gonad-stimulating peptides on oocyte maturation and ovulation in the starfish Asterias rubens and Aphelasterias japonica. Gen Comp Endocrinol 2020; 287:113351. [PMID: 31805285 DOI: 10.1016/j.ygcen.2019.113351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/15/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022]
Abstract
A relaxin-like gonad-stimulating peptide (RGP), comprising two peptide chains (A- and B-chains) linked by two interchain bonds and one intrachain disulfide bond, acts as a gonadotropin in starfish. RGP orthologs have been identified in several starfish species, including Patiria pectinifera (PpeRGP), Asterias rubens (AruRGP) and Aphelasterias japonica (AjaRGP). To analyze species-specificity, this study examined the effects on oocyte maturation and ovulation in ovaries of A. rubens and A. japonica of nine RGP derivatives comprising different combinations of A- and B-chains from the three species. All nine RGP derivatives induced spawning in A. rubens and A. japonica ovaries. However, AruRGP, AjaRGP and their chimeric derivatives were more potent than peptides containing the A- or B-chain of PpeRGP. Three-dimensional models of the structures of the RGP derivatives revealed that residues in the B-chains, such as AspB6, MetB10 and PheB13 in PpeRGP and GluB7, MetB11, and TyrB14 in AruRGP and AjaRGP, respectively, are likely to be involved in receptor binding. Conversely, it is likely that ArgA18 in the A-chain of AruRGP and AjaRGP impairs binding of these peptides to the PpeRGP receptor in P. pectinifera. In conclusion, this study provides new insights into the structural basis of RGP bioactivity and RGP receptor activation in starfish.
Collapse
Affiliation(s)
- Masatoshi Mita
- Department of Biochemistry, Showa University School of Medicine, Hatanodai 8-5-1, Shinagawa-ku, Tokyo 142-8555, Japan; Center for Advanced Biomedical Sciences, Waseda University, 2-2, Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
| | - Maurice R Elphick
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London E1 4NS, UK
| | - Hidekazu Katayama
- Department of Applied Biochemistry, School of Engineering, Tokai University, 4-1-1, Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| |
Collapse
|
11
|
Smith MK, Chieu HD, Aizen J, Mos B, Motti CA, Elizur A, Cummins SF. A Crown-of-Thorns Seastar recombinant relaxin-like gonad-stimulating peptide triggers oocyte maturation and ovulation. Gen Comp Endocrinol 2019; 281:41-48. [PMID: 31102581 DOI: 10.1016/j.ygcen.2019.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 05/04/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022]
Abstract
The Acanthaster planci species-complex [Crown-of-Thorns Seastar (COTS)] are highly fecund echinoderms that exhibit population outbreaks on coral reef ecosystems worldwide, including the Australian Great Barrier Reef. A better understanding of the COTS molecular biology is critical towards efforts in controlling outbreaks and assisting reef recovery. In seastars, the heterodimeric relaxin-like gonad stimulating peptide (RGP) is responsible for triggering a neuroendocrine cascade that regulates resumption of oocyte meiosis prior to spawning. Our comparative RNA-seq analysis indicates a general increase in RGP gene expression in the female radial nerve cord during the reproductive season. Also, the sensory tentacles demonstrate a significantly higher expression level than radial nerve cord. A recombinant COTS RGP, generated in a yeast expression system, is highly effective in inducing oocyte germinal vesicle breakdown (GVBD), followed by ovulation from ovarian fragments. The findings of this study provide a foundation for more in-depth molecular analysis of the reproductive neuroendocrine physiology of the COTS and the RGP.
Collapse
Affiliation(s)
- Meaghan K Smith
- GeneCology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland 4556, Australia
| | - Hoang Dinh Chieu
- GeneCology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland 4556, Australia
| | - Joseph Aizen
- The School of Marine Science, Ruppin Academic Centre, 4029700 Michmoret, Israel; GeneCology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland 4556, Australia
| | - Benjamin Mos
- National Marine Science Centre, Southern Cross University, 2 Bay Drive, Coffs Harbour, NSW 2450, Australia
| | - Cherie A Motti
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville, Queensland 4810, Australia
| | - Abigail Elizur
- GeneCology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland 4556, Australia
| | - Scott F Cummins
- GeneCology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland 4556, Australia.
| |
Collapse
|
12
|
Mita M. Starfish Gonadotropic Hormone: From Gamete-Shedding Substance to Relaxin-Like Gonad-Stimulating Peptide. Front Endocrinol (Lausanne) 2019; 10:182. [PMID: 30967842 PMCID: PMC6442644 DOI: 10.3389/fendo.2019.00182] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/04/2019] [Indexed: 12/02/2022] Open
Abstract
The first report of a gonadotropic substance in an invertebrate hot-water extract of radial nerve cords from starfish Asterias forbesi that induced the shedding of gametes when injected into the coelomic cavity in a ripe individual occurred in 1959. The active substance was named gamete-shedding substance (GSS) or radial nerve factor. GSS is the primary mediator of oocyte maturation and ovulation in starfish. However, the effect of GSS is indirect. Resumption of meiosis in immature oocytes and release from the ovary are induced by a second mediator, maturation-inducing hormone, identified as 1-methyladenine (1-MeAde) in starfish. The role of GSS is to induce 1-MeAde production by ovarian follicle cells. Thus, GSS was redesignated as gonad-stimulating substance (also GSS). Although GSS has been characterized biochemically as a peptide hormone, identification of the chemical structure had to wait until 2009. Fifty years after the initial finding, GSS was purified from the radial nerve cords of starfish Patiria pectinifera (P. pectinifera). The purified hormone was a heterodimer composed of A- and B-chains, with disulfide cross-linkages. Based on its cysteine motif, GSS is classified as a member of the insulin/insulin-like growth factor (IGF)/relaxin superfamily. More specifically, phylogenetic sequence analysis revealed that P. pectinifera GSS is a member of the relaxin-type peptide family. Therefore, GSS in starfish has been redesignated as relaxin-like gonad-stimulating peptide (RGP). Subsequently, orthologs of P. pectinifera RGP have been identified in other starfish species, including Asterias amurensis (A. amurensis), and Aphelasterias japonica (A. japonica).
Collapse
Affiliation(s)
- Masatoshi Mita
- Center for Advanced Biomedical Sciences, Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
13
|
Chieu HD, Turner L, Smith MK, Wang T, Nocillado J, Palma P, Suwansa-Ard S, Elizur A, Cummins SF. Aquaculture Breeding Enhancement: Maturation and Spawning in Sea Cucumbers Using a Recombinant Relaxin-Like Gonad-Stimulating Peptide. Front Genet 2019; 10:77. [PMID: 30838021 PMCID: PMC6389678 DOI: 10.3389/fgene.2019.00077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/28/2019] [Indexed: 12/22/2022] Open
Abstract
Wild sea cucumber resources have been rapidly exhausted and therefore there is an urgent need to develop approaches that will help restocking. Currently, there is a lack of information regarding the genes involved in sea cucumber reproductive processes. The neurohormone relaxin-like gonad-stimulating peptide (RGP) has been identified as the active gonad-stimulating peptide in sea stars (Asteroidea), which could also be present in other echinoderm groups. In this study, a sea cucumber RGP was identified and confirmed by phylogenetic analysis. A recombinant Holothuria scabra RGP was produced in the yeast Pichia pastoris and confirmed by mass spectrometry. To assess bioactivity, four levels of purification were tested in an in vitro germinal vesicle breakdown (GVBD) bioassay. The most pure form induced 98.56 ± 1.19% GVBD in H. scabra and 89.57 ± 1.19% GVBD in Holothuria leucospilota. Cruder levels of purification still resulted in some GVBD. Upon single injection into female H. scabra, the recombinant RGP induced head waving behavior followed by spawning within 90–170 min. Spawned oocytes were fertilized successfully, larvae settled and developed into juveniles. Our results provide a key finding for the development of a break-through new artificial breeding approach in sea cucumber aquaculture.
Collapse
Affiliation(s)
- Hoang Dinh Chieu
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia.,Research Institute for Marine Fisheries, HaiPhong, Vietnam
| | - Luke Turner
- Tasmanian Seafoods Pty. Ltd., Smithton, TAS, Australia
| | - Meaghan K Smith
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Tianfang Wang
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Josephine Nocillado
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Peter Palma
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia.,Aquaculture Department, Southeast Asian Fisheries Development Center, Iloilo, Philippines
| | - Saowaros Suwansa-Ard
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Abigail Elizur
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Scott F Cummins
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
14
|
Bathgate RA, Kocan M, Scott DJ, Hossain MA, Good SV, Yegorov S, Bogerd J, Gooley PR. The relaxin receptor as a therapeutic target – perspectives from evolution and drug targeting. Pharmacol Ther 2018; 187:114-132. [DOI: 10.1016/j.pharmthera.2018.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Mita M, Katayama H. Enzyme-linked immunosorbent assay of relaxin-like gonad-stimulating peptide in the starfish Patiria (Asterina) pectinifera. Gen Comp Endocrinol 2018; 258:157-162. [PMID: 28859971 DOI: 10.1016/j.ygcen.2017.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/25/2017] [Accepted: 08/27/2017] [Indexed: 10/19/2022]
Abstract
A relaxin-like gonad-stimulating peptide (RGP) from starfish Patiria (Asterina) pectinifera is the first identified invertebrate gonadotropin for final gamete maturation. Recently, we succeeded in obtaining specific antibodies against P. pectinifera RGP (PpeRGP). In this study, the antibodies were used for the development of a specific and sensitive enzyme-linked immunosorbent assay (ELISA) for the measurement of PpeRGP. A biotin-conjugated peptide that binds to peroxidase-conjugated streptavidin is specifically detectable using 3,3',5,5'-tetramethylbenzidine (TMB)/hydrogen peroxide as a substrate; therefore, biotin-conjugated RGP (biotin-PpeRGP) was synthesized chemically. Similarly to PpeRGP, synthetic biotin-PpeRGP bound to the antibody against PpeRGP. In binding experiments with biotin-PpeRGP using wells coated with the antibody, a displacement curve was obtained using serial concentrations of PpeRGP. The ELISA system showed that PpeRGP could be measured in the range 0.01-10pmol per 50µl assay buffer. On the contrary, the B-chains of PpeRGP, Asterias amurensis RGP, Aphelasterias japonica RGP, and human relaxin showed minimal cross-reactivity in the ELISA, except that the A-chain of PpeRGP affected it slightly. These results strongly suggest that this ELISA system is highly specific and sensitive with respect to PpeRGP.
Collapse
Affiliation(s)
- Masatoshi Mita
- Department of Biology, Faculty of Education, Tokyo Gakugei University, Koganei-shi, Tokyo 184-8501, Japan.
| | - Hidekazu Katayama
- Department of Applied Biochemistry, School of Engineering, Tokai University, Kitakaname 4-1-1, Hiratsuka, Kanagawa 259-1292, Japan
| |
Collapse
|
16
|
Yamamoto K, Kiyomoto M, Katayama H, Mita M. Radioimmunoassay of relaxin-like gonad-stimulating peptide in the starfish Patiria (=Asterina) pectinifera. Gen Comp Endocrinol 2017; 243:84-88. [PMID: 27838378 DOI: 10.1016/j.ygcen.2016.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
Abstract
A relaxin-like gonad-stimulating peptide (RGP) from starfish Patiria (=Asterina) pectinifera is the first identified invertebrate gonadotropin for final gamete maturation. An antiserum against P. pectinifera RGP (PpeRGP) was produced by immunizing rabbits with a PpeRGP sulfanyl-polyethylene glycol derivative conjugated with keyhole limpet hemocyanin (KLH) as the antigen. The antiserum was used for the development of a specific and sensitive radioimmunoassay (RIA) for the measurement of RGP. In binding experiments using radioiodinated PpeRGP and antiserum against PpeRGP, a displacement curve was obtained using radioinert PpeRGP. The sensitivity of the RIA, defined as the amount of PpeRGP that significantly decreased the counts by 2 SD from the 100% bound point, averaged 0.040±0.002pmol PpeRGP per 100μl assay buffer (0.40±0.02nM) in 10 assays. Intra-assay and inter-assay coefficients of variation were 6.1% and 2.7%, respectively. Serial dilution of whole homogenates from the radial nerve cords and circumoral nerve-rings of P. pectinifera produced displacement curves parallel to the PpeRGP standard. Thus, the amounts of PpeRGP were determined as 1.54±0.09pmol/mg wet weight of radial nerves and 0.87±0.04pmol/mg wet weight of nerve-rings, respectively. On contrary, pyloric stomach, pyloric caeca, tube-feet, ovaries, testes, and ovarian follicle cells did not react in the RIA system. Furthermore, the A- and B-chains of PpeRGP, Asterias amurensis RGP, bovine insulin, and human relaxin did not show cross-reactivity in the RIA. These results strongly suggest that the RIA system is a highly specific and sensitive with respect to PpeRGP.
Collapse
Affiliation(s)
- Kazutoshi Yamamoto
- Department of Biology, Faculty of Education and Integrated Sciences, Center for Advanced Biomedical Sciences, Waseda University, Wakamatsucho 2-2, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Masato Kiyomoto
- Tateyama Marine Laboratory, Marine and Coastal Research Center, Ochanomizu University, Kou-yatsu 11, Tateyama, Chiba 294-0301, Japan
| | - Hidekazu Katayama
- Department of Applied Biochemistry, School of Engineering, Tokai University, Kitakaname 4-1-1, Hiratsuka, Kanagawa 259-1292, Japan
| | - Masatoshi Mita
- Department of Biology, Faculty of Education, Tokyo Gakugei University, Nukuikita-machi 4-1-1, Koganei-shi, Tokyo 184-8501, Japan.
| |
Collapse
|
17
|
Mita M. Inhibitory mechanism of l
-glutamic acid on spawning of the starfish Patiria
(Asterina
) pectinifera. Mol Reprod Dev 2017; 84:246-256. [DOI: 10.1002/mrd.22769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/17/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Masatoshi Mita
- Department of Biology; Faculty of Education; Tokyo Gakugei University; Koganei Tokyo Japan
| |
Collapse
|
18
|
Mita M. Starfish gonadotropic hormone: Relaxin-like gonad-stimulating peptides. Gen Comp Endocrinol 2016; 230-231:166-9. [PMID: 27102940 DOI: 10.1016/j.ygcen.2016.04.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 04/14/2016] [Accepted: 04/16/2016] [Indexed: 11/19/2022]
Abstract
Relaxin-like gonad-stimulating peptide (RGP) of starfish Patiria (= Asterina) pectinifera is the first identified invertebrate gonadotropin to trigger final gamete maturation. Recently, chemical structures of RGP were identified in several species of starfish. Three kinds of RGP molecules are found in the class Asteroidea. The chemical structure of P. pectinifera RGP (PpeRGP) is conserved among starfish of the order Valvatida beyond species. In contrast, the chemical structures of RGP identified in Asterias amurensis and Aphelasterias japonica of the order Forcipulatida are quite different from that of PpeRGP. The chemical structure of RGP in A. amurensis (AamRGP) is exactly the same as that in Asterias rubens (the order Forcipulatida), Astropecten scoparius (the order Paxillosida), Astropecten polyacanthus (the order Paxillosida), and Echinaster luzonicus (the order Spinulosida). The chemical structure of Coscinasterias acutispina RGP (the order Forcipulatida) is consistent with that of A. japonica RGP (AjaRGP). In cross-experiments using P. pectinifera, A. amurensis, and A. japonica ovaries, AamRGP and AjaRGP can induce each species of ovaries. Neither AamRGP nor AjaRGP induce oocyte maturation and ovulation in the ovary of P. pectinifera, although the PpeRGP is active in ovaries of A. amurensis and A. japonica. This suggests that the AamRGP and AjaRGP partly act species specificity.
Collapse
Affiliation(s)
- Masatoshi Mita
- Department of Biology, Faculty of Education, Tokyo Gakugei University, Nukuikita-machi 4-1-1, Koganei-shi, Tokyo 184-8501, Japan.
| |
Collapse
|
19
|
Mita M, Katayama H. A relaxin-like gonad-stimulating peptide from the starfish Aphelasterias japonica. Gen Comp Endocrinol 2016; 229:56-61. [PMID: 26944483 DOI: 10.1016/j.ygcen.2016.02.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/19/2016] [Accepted: 02/29/2016] [Indexed: 11/21/2022]
Abstract
Relaxin-like gonad-stimulating peptide (RGP) in starfish is the first identified invertebrate gonadotropin responsible for final gamete maturation. In this study, a new ortholog RGP was identified from Aphelasterias japonica. The DNA sequence encoding A. japonica RGP (AjaRGP) consists of 342 base pairs with an open reading frame encoding a peptide of 113 amino acids (aa), including a signal peptide (26aa), B-chain (20aa), C-peptide (42aa), and A-chain (25aa). AjaRGP is a heterodimeric peptide with disulfide cross-linkages. Comparing with Asterias amurensis RGP (AamRGP) and Patiria (=Asterina) pectinifera RGP (PpeRGP), the amino acid identity levels of AjaRGP with respect to AamRGP and PpeRGP are 84% and 58% for the A-chain and 90% and 68% for the B-chain, respectively. This suggests that AjaRGP is closer to AmaRGP rather than PpeRGP. Although chemical synthetic AjaRGP can induce gamete spawning and oocyte maturation in ovarian fragments of A. japonica, the ovary of P. pectinifera fails to respond to AjaRGP. This suggests that AjaRGP acts species-specifically.
Collapse
Affiliation(s)
- Masatoshi Mita
- Department of Biology, Faculty of Education, Tokyo Gakugei University, Nukuikita-machi 4-1-1, Koganei-shi, Tokyo 184-8501, Japan.
| | - Hidekazu Katayama
- Department of Applied Biochemistry, School of Engineering, Tokai University, 4-1-1, Kitakaname, Hiratuska, Kanagawa 259-1292, Japan
| |
Collapse
|
20
|
Haraguchi S, Ikeda N, Abe M, Tsutsui K, Mita M. Nucleotide sequence and expression of relaxin-like gonad-stimulating peptide gene in starfish Asterina pectinifera. Gen Comp Endocrinol 2016; 227:115-9. [PMID: 26166482 DOI: 10.1016/j.ygcen.2015.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/09/2015] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
Abstract
Starfish gonad-stimulating substance (GSS) is the only known invertebrate peptide hormone responsible for final gamete maturation, rendering it functionally analogous to gonadotropins in vertebrates. Because GSS belongs to the relaxin-like peptide family, we propose renaming for starfish gonadotropic hormone as relaxin-like gonad-stimulating peptide (RGP). This study examined the primary structure and expression regulation of the RGP gene in starfish Asterina pectinifera. RGP consisted of 3896 base pairs (bp) divided over two exons, exon 1 of 208 bp and exon 2 of 2277 bp, and one intron of 1411 bp. Promoter sequences, CAAT and TATA boxes, were present in the 5'-upstream region of the coding DNA sequence of RGP. The transcript was 2485 bases (b) in length. The AAUAAA polyadenylation signal was found in 3'-untranslated region over 2kb away from the stop codon. This showed that only 14% of the RGP mRNA was translated into the peptide, because a size of the open-reading frame was 351 b. Furthermore, an analysis by using real-time quantitative PCR with specific primers for RGP showed that mRNA of RGP was expressed at high levels in the radial nerves. Expression was also observed in the cardiac stomachs, although the level was low, and trace levels were detected in the gonads, pyloric caeca and tube feet. This result suggests that the RGP gene is transcribed mainly in the radial nerves of A. pectinifera.
Collapse
Affiliation(s)
- Shogo Haraguchi
- Department of Biology, Faculty of Education, Tokyo Gakugei University, Nukuikita-machi 4-1-1, Koganei-shi, Tokyo 184-8501, Japan; Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Wakamatsucho 2-2, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Narumi Ikeda
- Department of Biology, Faculty of Education, Tokyo Gakugei University, Nukuikita-machi 4-1-1, Koganei-shi, Tokyo 184-8501, Japan
| | - Michiko Abe
- Department of Biology, Faculty of Education, Tokyo Gakugei University, Nukuikita-machi 4-1-1, Koganei-shi, Tokyo 184-8501, Japan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Wakamatsucho 2-2, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Masatoshi Mita
- Department of Biology, Faculty of Education, Tokyo Gakugei University, Nukuikita-machi 4-1-1, Koganei-shi, Tokyo 184-8501, Japan.
| |
Collapse
|
21
|
Mita M, Daiya M, Haraguchi S, Tsutsui K, Nagahama Y. A new relaxin-like gonad-stimulating peptide identified in the starfish Asterias amurensis. Gen Comp Endocrinol 2015; 222:144-9. [PMID: 26163025 DOI: 10.1016/j.ygcen.2015.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/12/2015] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
Abstract
Relaxin-like gonad-stimulating peptide (RGP) of starfish Asterina pectinifera was the first invertebrate gonadotropin to have its chemical structure identified. However, it is unclear whether gonadotropic hormones in other species starfish are relaxin-like peptides. Thus, this study tried to identify the molecular structure of gonadotropic hormone in Asterias amurensis. As a result, we identified A. amurensis gonadotropic hormone as the RGP (AamRGP). The DNA sequence encoding AamRGP consisted of 330 base pairs with an open reading frame encoding a peptide of 109 amino acids (aa), including a signal peptide (26 aa), B-chain (20 aa), C-peptide (38 aa) and A-chain (25 aa). Comparing with A. pectinifera RGP (ApeRGP), the amino acid identity levels between AmaRGP and ApeRGP were 58% for the A-chain and 73% for the B-chain. Furthermore, chemical synthetic AamRGP induced gamete spawning and oocyte maturation in ovarian fragments of A. amurensis. In contrast, the ovary of A. pectinifera failed to respond to the AamRGP. This suggested that AamRGP is a new relaxin-like peptide.
Collapse
Affiliation(s)
- Masatoshi Mita
- Department of Biology, Faculty of Education, Tokyo Gakugei University, Nukuikita-machi 4-1-1, Koganei-shi, Tokyo 184-8501, Japan.
| | - Misaki Daiya
- Department of Biology, Faculty of Education, Tokyo Gakugei University, Nukuikita-machi 4-1-1, Koganei-shi, Tokyo 184-8501, Japan
| | - Shogo Haraguchi
- Department of Biology, Faculty of Education, Tokyo Gakugei University, Nukuikita-machi 4-1-1, Koganei-shi, Tokyo 184-8501, Japan; Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Wakamatsucho 2-2, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Wakamatsucho 2-2, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yoshitaka Nagahama
- Institute for Collaborative Relations, Ehime University, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
22
|
Yegorov S, Bogerd J, Good SV. The relaxin family peptide receptors and their ligands: new developments and paradigms in the evolution from jawless fish to mammals. Gen Comp Endocrinol 2014; 209:93-105. [PMID: 25079565 DOI: 10.1016/j.ygcen.2014.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 07/01/2014] [Accepted: 07/16/2014] [Indexed: 12/13/2022]
Abstract
Relaxin family peptide receptors (Rxfps) and their ligands, relaxin (Rln) and insulin-like (Insl) peptides, are broadly implicated in the regulation of reproductive and neuroendocrine processes in mammals. Most placental mammals harbour genes for four receptors, namely rxfp1, rxfp2, rxfp3 and rxfp4. The number and identity of rxfps in other vertebrates are immensely variable, which is probably attributable to intraspecific variation in reproductive and neuroendocrine regulation. Here, we highlight several interesting, but greatly overlooked, aspects of the rln/insl-rxfp evolutionary history: the ancient origin, recruitment of novel receptors, diverse roles of selection, differential retention and lineage-specific loss of genes over evolutionary time. The tremendous diversity of rln/insl and rxfp genes appears to have arisen from two divergent receptors and one ligand that were duplicated by whole genome duplications (WGD) in early vertebrate evolution, although several genes, notably relaxin in mammals, were also duplicated via small scale duplications. Duplication and loss of genes have varied across lineages: teleosts retained more WGD-derived genes, dominated by those thought to be involved in neuroendocrine regulation (rln3, insl5 and rxfp 3/4 genes), while eutherian mammals witnessed the diversification and rapid evolution of genes involved in reproduction (rln/insl3). Several genes that arose early in evolutionary history were lost in most mammals, but retained in teleosts and, to a lesser extent, in early diverging tetrapods. To elaborate on their evolutionary history, we provide updated phylogenies of the Rxfp1/2 and Rxfp3/4 receptors and their ligands, including new sequences from early diverging vertebrate taxa such as coelacanth, skate, spotted gar, and lamprey. We also summarize the recent progress made towards understanding the functional biology of Rxfps in non-mammalian taxa, providing a new conceptual framework for research on Rxfp signaling across vertebrates.
Collapse
Affiliation(s)
- Sergey Yegorov
- Department of Biology, University of Winnipeg, 599 Portage Ave., Winnipeg, MB, Canada
| | - Jan Bogerd
- Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Sara V Good
- Department of Biology, University of Winnipeg, 599 Portage Ave., Winnipeg, MB, Canada.
| |
Collapse
|
23
|
Mita M, Haraguchi S, Watanabe M, Takeshige Y, Yamamoto K, Tsutsui K. Involvement of Gαs-proteins in the action of relaxin-like gonad-stimulating substance on starfish ovarian follicle cells. Gen Comp Endocrinol 2014; 205:80-7. [PMID: 24929230 DOI: 10.1016/j.ygcen.2014.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 11/22/2022]
Abstract
Gonad-stimulating substance (GSS) in starfish is the only known invertebrate peptide hormone responsible for final gamete maturation, rendering it functionally analogous to gonadotropins in vertebrates. In breeding season (stage V), GSS stimulates oocyte maturation to induce 1-methyladenine (1-MeAde) by ovarian follicle cells. The hormonal action of GSS is mediated through the activation of its receptor, G-proteins and adenylyl cyclase. It has been reported that GSS fails to induce 1-MeAde and cyclic AMP (cAMP) production in follicle cells of ovaries during oogenesis (stage IV). This study examined the regulatory mechanism how ovarian follicle cells acquire the potential to respond to GSS by producing 1-MeAde and cAMP. Because the failure of GSS action was due to G-proteins of follicle cells, the molecular structures of Gαs, Gαi, Gαq and Gβ were identified in follicle cells of starfish Asterina pectinifera. The cDNA sequences of Gαs, Gαi, Gαq and Gβ consisted of ORFs encoding 379, 354, 353 and 353 amino acids. The expression levels of Gαs were extremely low in follicle cells at stage IV, whereas the mRNA levels increased markedly in stage V. On contrary, the mRNA levels of Gαi were almost constant regardless of stage IV and V. These findings strongly suggest that de novo synthesis of Gαs-proteins is contributed to the action of GSS on follicle cells to produce 1-MeAde and cAMP.
Collapse
Affiliation(s)
- Masatoshi Mita
- Department of Biology, Faculty of Education, Tokyo Gakugei University, Nukuikita-machi 4-1-1, Koganei-shi, Tokyo 184-8501, Japan.
| | - Shogo Haraguchi
- Department of Biology, Faculty of Education, Tokyo Gakugei University, Nukuikita-machi 4-1-1, Koganei-shi, Tokyo 184-8501, Japan; Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Wakamatsucho 2-2, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Miho Watanabe
- Department of Biology, Faculty of Education, Tokyo Gakugei University, Nukuikita-machi 4-1-1, Koganei-shi, Tokyo 184-8501, Japan
| | - Yuki Takeshige
- Department of Biology, Faculty of Education, Tokyo Gakugei University, Nukuikita-machi 4-1-1, Koganei-shi, Tokyo 184-8501, Japan
| | - Kazutoshi Yamamoto
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Wakamatsucho 2-2, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Wakamatsucho 2-2, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
24
|
Mita M, Haraguchi S, Uzawa H, Tsutsui K. Contribution of de novo synthesis of Gαs-proteins to 1-methyladenine production in starfish ovarian follicle cells stimulated by relaxin-like gonad-stimulating substance. Biochem Biophys Res Commun 2013; 440:798-801. [DOI: 10.1016/j.bbrc.2013.10.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
|
25
|
Kalachev AV. A brief summary of neuroendocrine regulation of reproduction in sea stars. Gen Comp Endocrinol 2013; 183:79-82. [PMID: 23313074 DOI: 10.1016/j.ygcen.2012.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/23/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022]
Abstract
Over than fifty years starfishes have been widely used as model for studying the mechanisms of cell cycle regulation, oocyte maturation and fertilization. Besides, significant work has been done to investigate the role of nervous system in the control of reproduction and spawning in these animals. Nowadays, sea stars represent one of the most thoroughly studied model for hormonal regulation of reproduction among invertebrates. However, while the general picture of neuroendocrine control of asteroid reproduction can be drawn easily, our knowledge concerning the details of this process still has some gaps. Filling these gaps is essential for studying the diversity of hormonal mechanisms involved in regulation of animal reproduction. The present paper aims to briefly summarize current data on hormonal regulation of reproduction in sea stars and to highlight existing gaps in our knowledge on the details of this process.
Collapse
Affiliation(s)
- Alexander V Kalachev
- A.V. Zhirmunsky Institute of Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevskogo str., Vladivostok, Russia.
| |
Collapse
|
26
|
Mita M. Relaxin-like gonad-stimulating substance in an echinoderm, the starfish: a novel relaxin system in reproduction of invertebrates. Gen Comp Endocrinol 2013; 181:241-5. [PMID: 22841765 DOI: 10.1016/j.ygcen.2012.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 07/10/2012] [Accepted: 07/13/2012] [Indexed: 11/15/2022]
Abstract
Gonad-stimulating substance (GSS) in starfish is the only known invertebrate peptide hormone responsible for final gamete maturation, rendering it functionally analogous to gonadotropins in vertebrates. Recently, GSS was purified from the radial nerves of the starfish Asterina pectinifera and its chemical structure determined. This review summarizes the chemical structure of relaxin-like peptide, GSS, from a starfish as the first identified gonadotropin in invertebrates and its hormonal action on reproduction. The starfish GSS is a relaxin-like heterodimeric peptide composed of two peptides (A- and B-chains) with disulfide cross-linkages. Chemically synthesized GSS induced oocyte maturation and ovulation in vitro and an unique spawning behavior followed by release of gametes in vivo. GSS is a first trigger for oocyte maturation in starfish, but its effect is indirect because GSS acts on the ovary to produce a second mediator, 1-methyladenine (1-MeAde), as a maturation-inducing hormone of starfish. The action of GSS on ovarian follicle cells to produce 1-MeAde is mediated through the activation of its receptor, G-protein, and adenylyl cyclase. In contrast to follicle cells in a fully grown state, GSS fails to induce 1-MeAde production in growing follicle cells because of a lack of Gs-proteins. Thus, relaxin-like GSS is a major factor in the neuroendocrine cascade controlling reproduction in starfish.
Collapse
Affiliation(s)
- Masatoshi Mita
- Department of Biology, Faculty of Education, Tokyo Gakugei University, Nukuikita-machi 4-1-1, Koganei-shi, Tokyo 184-8501, Japan.
| |
Collapse
|
27
|
Mita M, Yamamoto K, Nakamura M, Takeshige Y, Watanabe M, Nagahama Y. Participation of Gs-proteins in the action of relaxin-like gonad-stimulating substance (GSS) for 1-methyladenine production in starfish ovarian follicle cells. Gen Comp Endocrinol 2012; 176:432-7. [PMID: 22134181 DOI: 10.1016/j.ygcen.2011.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/22/2011] [Accepted: 11/11/2011] [Indexed: 11/30/2022]
Abstract
Gonad-stimulating substance (GSS) in starfish is the only known invertebrate peptide hormone responsible for final gamete maturation, rendering it functionally analogous to gonadotropins in vertebrates. Recently, we purified GSS from radial nerves in the starfish Asterina pectinifera and identified the chemical structure as a heterodimer composed of two different peptides (A- and B-chain) with disulfide cross-linkages. This study examined the hormonal action of GSS on ovarian follicle cells obtained from ovaries in growing (stage IV) and fully grown (stage V) stages, and particularly the mode of signal transduction. The action of GSS on 1-MeAde production by follicle cells in stage V was mediated through the production of cAMP. In contrast, GSS failed to induce 1-MeAde and cAMP production by follicle cells in stage IV. According to competitive experiments using radioiodinated and radioinert GSS, highly specific binding was observed in follicle cells, though their affinities and numbers in stage IV were inferior to those in stage V. Interestingly, Gsα was not detected immunologically in follicle cell membranes of stage IV. Gβ was also faint in stage IV. Although adenylyl cyclase activity in stage V was dose-dependently activated by GSS in the presence of GTP, neither GSS in the presence of GTP nor nonhydrolyzable GTP analogs were effective on the activity in stage IV. These findings strongly suggest that the failure of GSS to produce 1-MeAde is because of a lack of Gs-proteins in follicle cells at stage IV.
Collapse
Affiliation(s)
- Masatoshi Mita
- Department of Biology, Faculty of Education, Tokyo Gakugei University, Nukuikita-machi 4-1-1, Koganei-shi, Tokyo 184-8501, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Yegorov S, Good S. Using paleogenomics to study the evolution of gene families: origin and duplication history of the relaxin family hormones and their receptors. PLoS One 2012; 7:e32923. [PMID: 22470432 PMCID: PMC3310001 DOI: 10.1371/journal.pone.0032923] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/05/2012] [Indexed: 11/28/2022] Open
Abstract
Recent progress in the analysis of whole genome sequencing data has resulted in the emergence of paleogenomics, a field devoted to the reconstruction of ancestral genomes. Ancestral karyotype reconstructions have been used primarily to illustrate the dynamic nature of genome evolution. In this paper, we demonstrate how they can also be used to study individual gene families by examining the evolutionary history of relaxin hormones (RLN/INSL) and relaxin family peptide receptors (RXFP). Relaxin family hormones are members of the insulin superfamily, and are implicated in the regulation of a variety of primarily reproductive and neuroendocrine processes. Their receptors are G-protein coupled receptors (GPCR's) and include members of two distinct evolutionary groups, an unusual characteristic. Although several studies have tried to elucidate the origins of the relaxin peptide family, the evolutionary origin of their receptors and the mechanisms driving the diversification of the RLN/INSL-RXFP signaling systems in non-placental vertebrates has remained elusive. Here we show that the numerous vertebrate RLN/INSL and RXFP genes are products of an ancestral receptor-ligand system that originally consisted of three genes, two of which apparently trace their origins to invertebrates. Subsequently, diversification of the system was driven primarily by whole genome duplications (WGD, 2R and 3R) followed by almost complete retention of the ligand duplicates in most vertebrates but massive loss of receptor genes in tetrapods. Interestingly, the majority of 3R duplicates retained in teleosts are potentially involved in neuroendocrine regulation. Furthermore, we infer that the ancestral AncRxfp3/4 receptor may have been syntenically linked to the AncRln-like ligand in the pre-2R genome, and show that syntenic linkages among ligands and receptors have changed dynamically in different lineages. This study ultimately shows the broad utility, with some caveats, of incorporating paleogenomics data into understanding the evolution of gene families.
Collapse
Affiliation(s)
- Sergey Yegorov
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Sara Good
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|