1
|
Abualnadi R, Tarboush NA, Shhab M, Zihlif M. Gene expression alterations in hypoxic A549 lung cancer cell line. Biomed Rep 2024; 21:183. [PMID: 39420921 PMCID: PMC11484184 DOI: 10.3892/br.2024.1871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/26/2024] [Indexed: 10/19/2024] Open
Abstract
Human non-small cell lung cancer (NSCLC)is a very common disease with limited treatment options. Hypoxia is a characteristic feature of solid tumors associated with the resistance of cancer cells to radiotherapy and chemotherapy. Therefore, the expression changes in cancer-resistance genes may be biomarkers of hypoxia with value in targeted therapy. The aim of the present study was to examine the effect of hypoxia on gene expression and the changes that occur in relation to drug resistance in a human NSCLC cell line (A549). A549 cells were exposed to 72-h hypoxic episodes (<1% oxygen) for a total of 10 episodes (acute). The alterations in gene expression were examined using PCR array technology after 10 episodes of acute hypoxia and compared with normoxic cells. The chemoresistance of hypoxic cells toward doxorubicin was measured using a MTT cell proliferation assay. A549 cells were affected by acute hypoxia leading to induced doxorubicin chemoresistance. Evident changes in the gene expression level were identified following episodes of acute hypoxia. The most important changes occurred in the estrogen receptor 1 (ESR1) and Finkel-Biskis-Jinkins osteosarcoma (FOS) pathways and in different nucleic transcription factors such as aryl hydrocarbon receptor and cyclin-dependent kinase inhibitor. The present study showed that exposing cells to prolonged periods of hypoxia results in different gene expression changes. There was induction of chemo-resistance due to acute hypoxia. ESR1 and c-FOS are proposed as a potential hypoxia genes in lung cancer.
Collapse
Affiliation(s)
- Rania Abualnadi
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Nafez Abu Tarboush
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Mohammad Shhab
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Malek Zihlif
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
2
|
The Motility and Mesenchymal Features of Breast Cancer Cells Correlate with the Levels and Intracellular Localization of Transglutaminase Type 2. Cells 2021; 10:cells10113059. [PMID: 34831282 PMCID: PMC8616519 DOI: 10.3390/cells10113059] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022] Open
Abstract
We have investigated motility in breast cancer cell lines in association with the expression of Transglutaminase type 2 (TG2) as well as upon the administration of Doxorubicin (Dox), an active cytotoxic agent that is employed in chemotherapy. The exposure of MCF-7 cells to the drug increased TG2 levels, triggering epithelial–mesenchymal transition (EMT), thereby supporting cell motility. The effects of Dox on the movement of MCF-7 cells were counteracted by treatment with NC9, a TG2 inhibitor, which induced morphological changes and also reduced the migration of MDA-MB-231 cells exhibiting high levels of TG2. The physical association of TG2 with the cytoskeletal component vimentin appeared pivotal both in drug-treated MCF-7 and in MDA-MB-231 cells and seemed to be independent of the catalytic activity of TG2. NC9 altered the subcellular distribution of TG2 and, consequently, the co-localization of TG2 with vimentin. Furthermore, NC9 induced a nuclear accumulation of TG2 as a prelude to TG2-dependent gene expression modifications. Since enzyme activity can affect both motility and nuclear functions, targeting of this protein could represent a method to improve therapeutic interventions in breast tumors, particularly those to control progression and to limit drug resistance.
Collapse
|
3
|
El Aliani A, El-Abid H, El Mallali Y, Attaleb M, Ennaji MM, El Mzibri M. Association between Gene Promoter Methylation and Cervical Cancer Development: Global Distribution and A Meta-analysis. Cancer Epidemiol Biomarkers Prev 2021; 30:450-459. [DOI: 10.1158/1055-9965.epi-20-0833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/27/2020] [Accepted: 12/31/2020] [Indexed: 12/24/2022] Open
|
4
|
Brtko J, Dvorak Z. Natural and synthetic retinoid X receptor ligands and their role in selected nuclear receptor action. Biochimie 2020; 179:157-168. [PMID: 33011201 DOI: 10.1016/j.biochi.2020.09.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
Important key players in the regulatory machinery within the cells are nuclear retinoid X receptors (RXRs), which compose heterodimers in company with several diverse nuclear receptors, playing a role as ligand inducible transcription factors. In general, nuclear receptors are ligand-activated, transcription-modulating proteins affecting transcriptional responses in target genes. RXR molecules forming permissive heterodimers with disparate nuclear receptors comprise peroxisome proliferator-activated receptors (PPARs), liver X receptors (LXRs), farnesoid X receptor (FXR), pregnane X receptor (PXR) and constitutive androstan receptor (CAR). Retinoid receptors (RARs) and thyroid hormone receptors (TRs) may form conditional heterodimers, and dihydroxyvitamin D3 receptor (VDR) is believed to form nonpermissive heterodimer. Thus, RXRs are the important molecules that are involved in control of many cellular functions in biological processes and diseases, including cancer or diabetes. This article summarizes both naturally occurring and synthetic ligands for nuclear retinoid X receptors and describes, predominantly in mammals, their role in molecular mechanisms within the cells. A focus is also on triorganotin compounds, which are high affinity RXR ligands, and finally, we present an outlook on human microbiota as a potential source of RXR activators. Nevertheless, new synthetic rexinoids with better retinoid X receptor activity and lesser side effects are highly required.
Collapse
Affiliation(s)
- Julius Brtko
- Institute of Experimental Endocrinology, Biomedical Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic.
| | - Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 11, 783 71, Olomouc, Czech Republic
| |
Collapse
|
5
|
Shi WN, Cui SX, Song ZY, Wang SQ, Sun SY, Yu XF, Li Y, Zhang YH, Gao ZH, Qu XJ. Overexpression of SphK2 contributes to ATRA resistance in colon cancer through rapid degradation of cytoplasmic RXRα by K48/K63-linked polyubiquitination. Oncotarget 2018; 8:39605-39617. [PMID: 28465486 PMCID: PMC5503636 DOI: 10.18632/oncotarget.17174] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/26/2017] [Indexed: 12/27/2022] Open
Abstract
The resistance mechanisms that limit the efficacy of retinoid therapy in cancer are poorly understood. Sphingosine kinase 2 (SphK2) is a highly conserved enzyme that is mainly located in the nucleus and endoplasmic reticulum. Unlike well-studied sphingosine kinase 1 (SphK1) located in the cytosol, little has yet understood the functions of SphK2. Here we show that SphK2 overexpression contributes to the resistance of all-trans retinoic acid (ATRA) therapy in colon cancer through rapid degradation of cytoplasmic retinoid X receptor α (RXRα) by lysine 48 (K48)- and lysine 63 (K63)-based polyubiquitination. Human colonic adenocarcinoma HCT-116 cells transfected with SphK2 (HCT-116Sphk2 cells) demonstrate resistance to ATRA therapy as determined by in vitro and in vivo assays. Sphk2 overexpression increases the ATRA-induced nuclear RXRα export to cytoplasm and then rapidly degrades RXRα through the polyubiquitination pathway. We further show that Sphk2 activates the ubiquitin-proteasome system through the signal mechanisms of (1) K48-linked proteosomal degradation and (2) K63-linked ubiquitin-dependent autophagic degradation. These results provide new insights into the biological functions of Sphk2 and the molecular mechanisms that underlie the Sphk2-mediated resistance to retinoid therapy.
Collapse
Affiliation(s)
- Wen-Na Shi
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shu-Xiang Cui
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Zhi-Yu Song
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shu-Qing Wang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shi-Yue Sun
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xin-Feng Yu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ye Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yu-Hang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zu-Hua Gao
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Xian-Jun Qu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Saeed A, Dullaart RPF, Schreuder TCMA, Blokzijl H, Faber KN. Disturbed Vitamin A Metabolism in Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients 2017; 10:nu10010029. [PMID: 29286303 PMCID: PMC5793257 DOI: 10.3390/nu10010029] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022] Open
Abstract
Vitamin A is required for important physiological processes, including embryogenesis, vision, cell proliferation and differentiation, immune regulation, and glucose and lipid metabolism. Many of vitamin A’s functions are executed through retinoic acids that activate transcriptional networks controlled by retinoic acid receptors (RARs) and retinoid X receptors (RXRs).The liver plays a central role in vitamin A metabolism: (1) it produces bile supporting efficient intestinal absorption of fat-soluble nutrients like vitamin A; (2) it produces retinol binding protein 4 (RBP4) that distributes vitamin A, as retinol, to peripheral tissues; and (3) it harbors the largest body supply of vitamin A, mostly as retinyl esters, in hepatic stellate cells (HSCs). In times of inadequate dietary intake, the liver maintains stable circulating retinol levels of approximately 2 μmol/L, sufficient to provide the body with this vitamin for months. Liver diseases, in particular those leading to fibrosis and cirrhosis, are associated with impaired vitamin A homeostasis and may lead to vitamin A deficiency. Liver injury triggers HSCs to transdifferentiate to myofibroblasts that produce excessive amounts of extracellular matrix, leading to fibrosis. HSCs lose the retinyl ester stores in this process, ultimately leading to vitamin A deficiency. Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and is a spectrum of conditions ranging from benign hepatic steatosis to non-alcoholic steatohepatitis (NASH); it may progress to cirrhosis and liver cancer. NASH is projected to be the main cause of liver failure in the near future. Retinoic acids are key regulators of glucose and lipid metabolism in the liver and adipose tissue, but it is unknown whether impaired vitamin A homeostasis contributes to or suppresses the development of NAFLD. A genetic variant of patatin-like phospholipase domain-containing 3 (PNPLA3-I148M) is the most prominent heritable factor associated with NAFLD. Interestingly, PNPLA3 harbors retinyl ester hydrolase activity and PNPLA3-I148M is associated with low serum retinol level, but enhanced retinyl esters in the liver of NAFLD patients. Low circulating retinol in NAFLD may therefore not reflect true “vitamin A deficiency”, but rather disturbed vitamin A metabolism. Here, we summarize current knowledge about vitamin A metabolism in NAFLD and its putative role in the progression of liver disease, as well as the therapeutic potential of vitamin A metabolites.
Collapse
Affiliation(s)
- Ali Saeed
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
- Institute of Molecular Biology & Bio-Technology, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Robin P F Dullaart
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Tim C M A Schreuder
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
7
|
Guan F, Wang L, Hao S, Wu Z, Bai J, Kang Z, Zhou Q, Chang H, Yin H, Li D, Tian K, Ma J, Zhang G, Zhang J. Retinol dehydrogenase-10 promotes development and progression of human glioma via the TWEAK-NF-κB axis. Oncotarget 2017; 8:105262-105275. [PMID: 29285249 PMCID: PMC5739636 DOI: 10.18632/oncotarget.22166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/25/2017] [Indexed: 12/03/2022] Open
Abstract
Retinol dehydrogenase-10 (RDH10) is a member of the short-chain dehydrogenase/reductase family, which plays an important role in retinoic acid (RA) synthesis. Here, we show that RDH10 is highly expressed in human gliomas, and its expression correlates with tumor grade and patient survival times. In vitro, lentivirus-mediated shRNA knockdown of RDH10 suppressed glioma cell proliferation, survival, and invasiveness and cell cycle progression. In vivo, RDH10 knockdown reduced glioma growth in nude mice. Microarray analysis revealed that RDH10 silencing reduces expression of TNFRSF12A (Fn14), TNFSF12 (TWEAK), TRAF3, IKBKB (IKK-β), and BMPR2, while it increases expression of TRAF1, NFKBIA (IκBα), NFKBIE (IκBε), and TNFAIP3. This suggests that RDH10 promotes glioma cell proliferation and survival by regulating the TWEAK-NF-κB axis, and that it could potentially serve as a novel target for human glioma treatment.
Collapse
Affiliation(s)
- Feng Guan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuyu Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian Bai
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Zhuang Kang
- Department of Glioma, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Quan Zhou
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hong Chang
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hui Yin
- Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing, China
| | - Da Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kaibin Tian
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junpeng Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guijun Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junting Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Gasch C, Ffrench B, O'Leary JJ, Gallagher MF. Catching moving targets: cancer stem cell hierarchies, therapy-resistance & considerations for clinical intervention. Mol Cancer 2017; 16:43. [PMID: 28228161 PMCID: PMC5322629 DOI: 10.1186/s12943-017-0601-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/20/2017] [Indexed: 12/25/2022] Open
Abstract
It is widely believed that targeting the tumour-initiating cancer stem cell (CSC) component of malignancy has great therapeutic potential, particularly in therapy-resistant disease. However, despite concerted efforts, CSC-targeting strategies have not been efficiently translated to the clinic. This is partly due to our incomplete understanding of the mechanisms underlying CSC therapy-resistance. In particular, the relationship between therapy-resistance and the organisation of CSCs as Stem-Progenitor-Differentiated cell hierarchies has not been widely studied. In this review we argue that modern clinical strategies should appreciate that the CSC hierarchy is a dynamic target that contains sensitive and resistant components and expresses a collection of therapy-resisting mechanisms. We propose that the CSC hierarchy at primary presentation changes in response to clinical intervention, resulting in a recurrent malignancy that should be targeted differently. As such, addressing the hierarchical organisation of CSCs into our bench-side theory should expedite translation of CSC-targeting to bed-side practice. In conclusion, we discuss strategies through which we can catch these moving clinical targets to specifically compromise therapy-resistant disease.
Collapse
Affiliation(s)
- Claudia Gasch
- Department of Histopathology, University of Dublin, Trinity College, Central Pathology Laboratory, St James's Hospital, Dublin 8, Dublin, Ireland.,Coombe Women and Infant's Hospital, Dublin 8, Dublin, Ireland
| | - Brendan Ffrench
- Department of Histopathology, University of Dublin, Trinity College, Central Pathology Laboratory, St James's Hospital, Dublin 8, Dublin, Ireland.,Coombe Women and Infant's Hospital, Dublin 8, Dublin, Ireland
| | - John J O'Leary
- Department of Histopathology, University of Dublin, Trinity College, Central Pathology Laboratory, St James's Hospital, Dublin 8, Dublin, Ireland.,Coombe Women and Infant's Hospital, Dublin 8, Dublin, Ireland
| | - Michael F Gallagher
- Department of Histopathology, University of Dublin, Trinity College, Central Pathology Laboratory, St James's Hospital, Dublin 8, Dublin, Ireland. .,Coombe Women and Infant's Hospital, Dublin 8, Dublin, Ireland.
| |
Collapse
|
9
|
Mouh FZ, Mzibri ME, Slaoui M, Amrani M. Recent Progress in Triple Negative Breast Cancer Research. Asian Pac J Cancer Prev 2017; 17:1595-608. [PMID: 27221827 DOI: 10.7314/apjcp.2016.17.4.1595] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is defined as a type of breast carcinoma that is negative for expression of oestrogene and progesterone hormone receptors (ER, PR) and HER2. This form of breast cancer is marked by its aggressiveness, low survival rate and lack of specific therapies. Recently, important molecular characteristics of TNBC have been highlighted and led to the identification of some biomarkers that could be used in diagnosis, as therapeutic targets or to assess the prognosis. In this review, we summarize recent progress in TNBC research focusing on the genetic and epigenetic alterations of TNBC and the potential use of these biomarkers in the targeted therapy for better management of TNBC.
Collapse
Affiliation(s)
- Fatima Zahra Mouh
- Equipe deRecherche ONCOGYMA, University of Mohamed V, Faculty of Medicine and Pharmacy of Rabat Morocco E-mail :
| | | | | | | |
Collapse
|
10
|
Upregulation of retinoic acid receptor-β reverses drug resistance in cholangiocarcinoma cells by enhancing susceptibility to apoptosis. Mol Med Rep 2016; 14:3602-8. [PMID: 27599527 PMCID: PMC5042735 DOI: 10.3892/mmr.2016.5701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 05/26/2016] [Indexed: 11/13/2022] Open
Abstract
Retinoic acid receptor β (RARβ), a known tumor suppressor gene, is frequently silenced in numerous malignant types of tumor. Recent reports have demonstrated that loss of RARβ expression may be responsible, in part, for the drug resistance observed in clinical trials. However, little is known about the role of RARβ in regulating drug sensitivity in patients with cholangiocarcinoma (CCA) with a high risk of mortality and poor outcomes. In the present study, low RARβ expression was observed in the majority of CCA tissues investigated (28/33, 84.8%). In addition, the CCA cell line QBC939, which exhibits low RARβ expression, was found to be significantly resistant to chemotherapeutic agents compared with SK-ChA-1, MZ-ChA-1 and Hccc9810 CCA cell lines, which exhibit high RARβ expression. Furthermore, upregulation of RARβ significantly enhanced the sensitivity of QBC939 cells to common chemotherapeutic agents both in vitro and in vivo. Upregulation of RARβ was shown to increase the expression of proapoptotic genes bax, bak and bim, in addition to caspase-3 activity, and decrease the expression of antiapoptotic genes bcl-2, bcl-xL and mcl-1. As a result, CCA cells were more susceptible to caspase-dependent apoptosis. Taken together, these data suggest that RARβ upregulation rendered CCA cells more sensitive to chemotherapeutic agents by increasing the susceptibility of cells to caspase-dependent apoptosis. These results support the hypothesis that RARβ may be an ideal chemosensitization target for the treatment of patients with drug-resistant CCA.
Collapse
|
11
|
Radioligand binding assay for accurate determination of nuclear retinoid X receptors: A case of triorganotin endocrine disrupting ligands. Toxicol Lett 2016; 254:32-6. [DOI: 10.1016/j.toxlet.2016.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/22/2016] [Accepted: 05/02/2016] [Indexed: 12/21/2022]
|
12
|
Berardi DE, Flumian C, Campodónico PB, Urtreger AJ, Diaz Bessone MI, Motter AN, Bal de Kier Joffé ED, Farias EF, Todaro LB. Myoepithelial and luminal breast cancer cells exhibit different responses to all-trans retinoic acid. Cell Oncol (Dordr) 2015; 38:289-305. [PMID: 26044847 DOI: 10.1007/s13402-015-0230-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2015] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Breast cancer is the leading cause of death among women worldwide. The exact role of luminal epithelial (LEP) and myoephitelial (MEP) cells in breast cancer development is as yet unclear, as also how retinoids may affect their behaviour. Here, we set out to evaluate whether retinoids may differentially regulate cell type-specific processes associated with breast cancer development using the bi-cellular LM38-LP murine mammary adenocarcinoma cell line as a model. MATERIALS AND METHODS The bi-cellular LM38-LP murine mammary cell line was used as a model throughout all experiments. LEP and MEP subpopulations were separated using inmunobeads, and the expression of genes known to be involved in epithelial to mysenchymal transition (EMT) was assessed by qPCR after all-trans retinoic acid (ATRA) treatment. In vitro invasive capacities of LM38-LP cells were evaluated using 3D Matrigel cultures in conjunction with confocal microscopy. Also, in vitro proliferation, senescence and apoptosis characteristics were evaluated in the LEP and MEP subpopulations after ATRA treatment, as well as the effects of ATRA treatment on the clonogenic, adhesive and invasive capacities of these cells. Mammosphere assays were performed to detect stem cell subpopulations. Finally, the orthotopic growth and metastatic abilities of LM38-LP monolayer and mammosphere-derived cells were evaluated in vivo. RESULTS We found that ATRA treatment modulates a set of genes related to EMT, resulting in distinct gene expression signatures for the LEP or MEP subpopulations. We found that the MEP subpopulation responds to ATRA by increasing its adhesion to extracellular matrix (ECM) components and by reducing its invasive capacity. We also found that ATRA induces apoptosis in LEP cells, whereas the MEP compartment responded with senescence. In addition, we found that ATRA treatment results in smaller and more organized LM38-LP colonies in Matrigel. Finally, we identified a third subpopulation within the LM38-LP cell line with stem/progenitor cell characteristics, exhibiting a partial resistance to ATRA. CONCLUSIONS Our results show that the luminal epithelial (LEP) and myoephitelial (MEP) mammary LM38-P subpopulations respond differently to ATRA, i.e., the LEP subpopulation responds with increased cell cycle arrest and apoptosis and the MEP subpopulation responds with increased senescence and adhesion, thereby decreasing its invasive capacity. Finally, we identified a third subpopulation with stem/progenitor cell characteristics within the LM38-LP mammary adenocarcinoma cell line, which appears to be non-responsive to ATRA.
Collapse
MESH Headings
- Adenocarcinoma/drug therapy
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Cell Cycle Checkpoints/drug effects
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Disease Models, Animal
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mammary Neoplasms, Animal/drug therapy
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mice, Inbred BALB C
- Microscopy, Fluorescence
- Models, Biological
- Receptors, Retinoic Acid/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Tretinoin/pharmacology
- Tumor Burden/drug effects
Collapse
Affiliation(s)
- Damián E Berardi
- Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Av. San Martín 5481, C1417DTB, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen PH, Shih CM, Chang WC, Cheng CH, Lin CW, Ho KH, Su PC, Chen KC. MicroRNA-302b-inhibited E2F3 transcription factor is related to all trans retinoic acid-induced glioma cell apoptosis. J Neurochem 2014; 131:731-42. [PMID: 25040912 DOI: 10.1111/jnc.12820] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 07/01/2014] [Accepted: 07/09/2014] [Indexed: 12/27/2022]
Abstract
All-trans retinoic acid (ATRA), a derivative of retinoid, is involved in the onset of differentiation and apoptosis in a wide variety of normal and cancer cells. MicroRNAs (miRNAs) are small non-coding RNAs that control gene expression. Several miRNAs were identified to participate in ATRA-mediated cell differentiation. However, no studies have demonstrated whether miRNA can enhance ATRA cytotoxicity, thereby resulting in cell apoptosis. This study investigated the effects of ATRA-mediated miRNA expression in activating apoptotic pathways in glioblastoma. First, we found that high-dose ATRA treatment significantly reduced cell viability, caspase-dependent apoptosis, endoplasmic reticular (ER) stress activation, and intracellular reactive oxygen species accumulation. From microarray data, miR-302b was analyzed as a putative downstream regulator upon ATRA treatment. Furthermore, we found that ATRA up-regulated miR-302b expression in a dose- and time-dependent manner through retinoic acid receptor α-mediated pathway. Overexpression and knockdown of miR-302b significantly influenced ATRA-mediated cytotoxicity. E2F3, an important transcriptional regulator of glioma proliferation, was validated to be a direct target gene of miR-302b. The miR-302b-reduced E2F3 levels were also identified to be associated with ATRA-mediated glioma cell death. These results emphasize that an ATRA-mediated miR-302b network may provide novel therapeutic strategies for glioblastoma therapy. We propose that high-dose all-trans retinoic acid (ATRA) treatment, a derivative of retinoid, significantly induces glioblastoma cell apoptosis via caspase-dependent apoptosis, endoplasmic reticular (ER) stress, and intracellular reactive oxygen species (ROS) accumulation. The miR-302b overexpression enhanced by ATRA-mediated retinoic acid receptor (RAR)α pathway was also identified. The E2F3 repression, a novel target gene of miR-302b, was involved in ATRA-induced glioblastoma cell cytotoxicity.
Collapse
Affiliation(s)
- Peng-Hsu Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sun J, Xu X, Liu J, Liu H, Fu L, Gu L. Epigenetic regulation of retinoic acid receptor β2 gene in the initiation of breast cancer. Med Oncol 2012; 28:1311-8. [PMID: 20865461 DOI: 10.1007/s12032-010-9685-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In order to investigate the methylation status of the retinoic acid receptor beta 2 gene (RAR-β2) in breast carcinoma in relation to gene expression and clinicopathological parameters of patients with breast cancer, expression of RAR-β2 gene and methylation status were analyzed in invasive carcinoma, atypical ductal hyperplasia, fibroadenoma specimens, and normal tissues. Our findings showed that RAR-β2 expression was lower in the breast cancer compared to normal tissue and fibroadenoma. The methylation rate of RAR-β2 in breast cancer and precancerous lesions of breast cancer were higher than that of normal tissues. Hypermethylation may be an initial step in breast carcinogenesis.
Collapse
Affiliation(s)
- Jingyan Sun
- Department of Breast Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, People's Republic of China
| | | | | | | | | | | |
Collapse
|
15
|
Combined effects of melatonin and all-trans retinoic acid and somatostatin on breast cancer cell proliferation and death: molecular basis for the anticancer effect of these molecules. Eur J Pharmacol 2012; 681:34-43. [PMID: 22532966 DOI: 10.1016/j.ejphar.2012.02.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Melatonin has been shown to inhibit breast cancer cell growth in numerous studies. However, our understanding of the therapeutic effects of this hormone is still marginal and there is little information concerning its combination with other antitumor agents to achieve additional potential benefits. All-trans retinoic acids or somatostatin have been used in combination with melatonin in several pre-clinical and clinical trials, but they have never been combined altogether as an anti-breast cancer treatment. In the present study, we investigated whether the association of melatonin, all-trans retinoic acid and somatostatin leads to an enhanced anticancer activity in MCF-7 breast cancer cells. In such conditions, MCF-7 cells were investigated for cell growth/viability and proliferation, as well as for the expression of cyclin A, and components of the Notch and EGFR pathways, by Western blotting and confocal immunofluorescence. Electrophysiological, morphological, and biochemical analysis were also performed to reveal signs of cell damage and death. We found that melatonin in combination with all-trans retinoic acid and somatostatin potentiated the effects of melatonin alone on MCF-7 cell viability and growth inhibition; this phenomenon was associated with altered conductance through Ca²⁺ and voltage-activated K⁺ (BK) channels, and with substantial impairments of Notch-1 and epidermal growth factor (EGF)-mediated signaling. The combined treatment also caused a marked reduction in mitochondrial membrane potential and intracellular ATP production as well as induction of necrotic cell death. Taken together our results indicate that co-administration of melatonin with all-trans retinoic acid and somatostatin may be of significant therapeutic benefit in breast cancer.
Collapse
|
16
|
Gariglio P, Gutiérrez J, Cortés E, Vázquez J. The role of retinoid deficiency and estrogens as cofactors in cervical cancer. Arch Med Res 2009; 40:449-465. [PMID: 19853185 DOI: 10.1016/j.arcmed.2009.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 07/09/2009] [Indexed: 12/18/2022]
Abstract
Persistent infection with high-risk human papillomaviruses (HR-HPVs) is involved in cervical cancer (CC), a major cause of cancer mortality worldwide. Infection occurs primarily at the transformation zone (TZ), the most estrogen- and retinoid-sensitive region of the cervix. Development of CC affects a small percentage of HR-HPV-infected women and often takes decades after infection, suggesting that HR-HPV is a necessary but not sufficient cause of CC. Thus, other cofactors are necessary for progression from cervical HR-HPV infection to cancer such as long-term use of hormonal contraceptives, multiparity, smoking, as well as micronutrient depletion and in particular retinoid deficiency, which alters epithelial differentiation, cellular growth and apoptosis of malignant cells. Therefore, early detection of HR-HPV and management of precancerous lesions together with a profound understanding of additional risk factors could be a strategy to avoid this disease. In this review we focus on the synergic effect of estrogens, retinoid deficiency and HR-HPVs in the development of CC. These risk factors may act in concert to induce neoplastic transformation in squamous epithelium of the cervix, setting the stage for secondary genetic or epigenetic events leading to cervical cancer.
Collapse
Affiliation(s)
- Patricio Gariglio
- Departamento de Genética y Biología Molecular, Cinvestav-IPN, México D.F., México.
| | | | | | | |
Collapse
|
17
|
Brtko J. Retinoids, rexinoids and their cognate nuclear receptors: character and their role in chemoprevention of selected malignant diseases. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2008; 151:187-94. [PMID: 18345250 DOI: 10.5507/bp.2007.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Retinoids, rexinoids and their biologically active derivatives are involved in a complex arrangement of physiological and developmental responses in many tissues of higher vertebrates. Both retinoids and rexinoids are either natural or synthetic compounds related to retinoic acids that act through interaction with two basic types of nuclear receptors belonging to the nuclear receptor superfamily: All-trans retinoic acid receptors (RARalpha, RARbeta, and RARgamma) and retinoid X receptors (RXRalpha, RXRbeta and RXRgamma) as retinoid-inducible transcription factors. AIM Summarization of selected effects of biologically active natural or synthetic retinoids and rexinoids and their exploitation in chemoprevention of various types of cancer. RESULTS Retinoid receptors play a role as ligand-activated, DNA-binding, trans-acting, transcription-modulating proteins involved in a general molecular mechanism responsible for transcriptional responses in target genes. They exert both beneficial and detrimental activity; they have tumour-suppressive activity but on the other hand they are teratogenic. A number of nuclear receptor selective retinoids and rexinoids, have been successfully tested using a variety of cell lines or animal models. Retinoids inhibit carcinogenesis, suppress premalignant epithelial lesions and tumour growth and invasion in a variety of tissues. CONCLUSIONS Natural and synthetic retinoids exert important biological effects due to their antiproliferative and apoptosis-inducing effects. They are also known to cause redifferentiation or to prevent further dedifferentiation of various tumour tissues.
Collapse
Affiliation(s)
- Julius Brtko
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Laboratory of Molecular Endocrinology, Bratislava, Slovak Republic.
| |
Collapse
|
18
|
Negraes PD, Favaro FP, Camargo JLV, Oliveira MLCS, Goldberg J, Rainho CA, Salvadori DMF. DNA methylation patterns in bladder cancer and washing cell sediments: a perspective for tumor recurrence detection. BMC Cancer 2008; 8:238. [PMID: 18702824 PMCID: PMC2527332 DOI: 10.1186/1471-2407-8-238] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 08/14/2008] [Indexed: 12/31/2022] Open
Abstract
Background Epigenetic alterations are a hallmark of human cancer. In this study, we aimed to investigate whether aberrant DNA methylation of cancer-associated genes is related to urinary bladder cancer recurrence. Methods A set of 4 genes, including CDH1 (E-cadherin), SFN (stratifin), RARB (retinoic acid receptor, beta) and RASSF1A (Ras association (RalGDS/AF-6) domain family 1), had their methylation patterns evaluated by MSP (Methylation-Specific Polymerase Chain Reaction) analysis in 49 fresh urinary bladder carcinoma tissues (including 14 cases paired with adjacent normal bladder epithelium, 3 squamous cell carcinomas and 2 adenocarcinomas) and 24 cell sediment samples from bladder washings of patients classified as cancer-free by cytological analysis (control group). A third set of samples included 39 archived tumor fragments and 23 matched washouts from 20 urinary bladder cancer patients in post-surgical monitoring. After genomic DNA isolation and sodium bisulfite modification, methylation patterns were determined and correlated with standard clinic-histopathological parameters. Results CDH1 and SFN genes were methylated at high frequencies in bladder cancer as well as in paired normal adjacent tissue and exfoliated cells from cancer-free patients. Although no statistically significant differences were found between RARB and RASSF1A methylation and the clinical and histopathological parameters in bladder cancer, a sensitivity of 95% and a specificity of 71% were observed for RARB methylation (Fisher's Exact test (p < 0.0001; OR = 48.89) and, 58% and 17% (p < 0.05; OR = 0.29) for RASSF1A gene, respectively, in relation to the control group. Conclusion Indistinct DNA hypermethylation of CDH1 and SFN genes between tumoral and normal urinary bladder samples suggests that these epigenetic features are not suitable biomarkers for urinary bladder cancer. However, RARB and RASSF1A gene methylation appears to be an initial event in urinary bladder carcinogenesis and should be considered as defining a panel of differentially methylated genes in this neoplasia in order to maximize the diagnostic coverage of epigenetic markers, especially in studies aiming at early recurrence detection.
Collapse
Affiliation(s)
- Priscilla D Negraes
- Department of Genetics, Biosciences Institute, UNESP, Sao Paulo State University, Botucatu, Sao Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
19
|
Rabi T, Bishayee A. Terpenoids and breast cancer chemoprevention. Breast Cancer Res Treat 2008; 115:223-39. [PMID: 18636327 DOI: 10.1007/s10549-008-0118-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 07/01/2008] [Indexed: 12/17/2022]
Abstract
Cancer chemoprevention is defined as the use of natural or synthetic agents that reverse, suppress or arrest carcinogenic and/or malignant phenotype progression towards invasive cancer. Phytochemicals obtained from vegetables, fruits, spices, herbs and medicinal plants, such as terpenoids, carotenoids, flavanoids, phenolic compounds, and other groups of compounds have shown promise in suppressing experimental carcinogenesis in various organs. Recent studies have indicated that mechanisms underlying chemopreventive action may include combinations of anti-oxidant, anti-inflammatory, immune-enhancing, and anti-hormone effects. Further, modification of drug-metabolizing enzymes, and influences on cell cycling and differentiation, induction of apoptosis, and suppression of proliferation and angiogenesis that play a role in the initiation and secondary modification of neoplastic development, have also been under investigation as possible mechanisms. This review will highlight the biological effects of terpenoids as chemopreventive agents on breast epithelial carcinogenesis, and the utility of intermediate biomarkers as indicators of premalignancy. Selected breast chemoprevention trials are discussed with a focus on strategies for trial design, and clinical outcomes. Future directions in the field of chemoprevention are proposed based on recently acquired mechanistic insights into breast carcinogenesis.
Collapse
Affiliation(s)
- Thangaiyan Rabi
- Department of Pharmaceutical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, 4209 State Route 44, Rootstown, OH 44272, USA
| | | |
Collapse
|