1
|
Chen S, Wang S, Ding S, Zhang C. Evaluation of Tibial Hemodynamic Response to Glucose Tolerance Test in Young Healthy Males and Females. Nutrients 2023; 15:4062. [PMID: 37764845 PMCID: PMC10535503 DOI: 10.3390/nu15184062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The relationship between glucose metabolism and bone health remains underexplored despite its clinical relevance. This study utilized the oral glucose tolerance test (OGTT) and near-infrared spectroscopy (NIRS) to probe gender-specific disparities in tibial hemodynamic responses among young healthy adults. Twenty-eight healthy participants (14 males) aged 18-28 years old were recruited for this study. After ingesting a 75 g glucose solution, tibial hemodynamic responses were captured using NIRS in combination with a 5 min ischemic reperfusion technique, both before and at 30 min intervals for two hours post-glucose ingestion. Parameters measured included oxidative metabolic rate (via tissue saturation index [TSI]), immediate recovery slope after occlusion release (TSI10), and total recovery magnitude (ΔTSI). Post-glucose ingestion, both genders demonstrated a surge in blood glucose concentrations at every time point compared to baseline (p < 0.001, 0.002, 0.009, and 0.039 for males; p < 0.001, < 0.001, = 0.002, and 0.017 for females). Baseline tibial metabolic rate, TSI10, and ΔTSI did not significantly differ between males and females (p = 0.734, 0.839, and 0.164, respectively), with no discernible temporal effects in any hemodynamic parameters within each gender (p = 0.864, 0.308, and 0.399, respectively, for males; p = 0.973, 0.453, and 0.137, respectively, for females). We found comparable tibial hemodynamic responses to OGTT between genders. This study demonstrated the utility of NIRS in evaluating tibial hemodynamic responses to glucose ingestion through OGTT, enriching our understanding of the body's metabolic responses to glucose intake.
Collapse
Affiliation(s)
- Si Chen
- School of Physical Education and Sport, Central China Normal University, Wuhan 430079, China; (S.C.); (S.D.)
| | - Shubo Wang
- Globus Medical Inc., Audubon, PA 19403, USA;
| | - Shuqiao Ding
- School of Physical Education and Sport, Central China Normal University, Wuhan 430079, China; (S.C.); (S.D.)
| | - Chuan Zhang
- School of Physical Education and Sport, Central China Normal University, Wuhan 430079, China; (S.C.); (S.D.)
| |
Collapse
|
2
|
Hedge ET, Vico L, Hughson RL, Mastrandrea CJ. Effects of Posture and Walking on Tibial Vascular Hemodynamics Before and After 14 Days of Head-Down Bed Rest. JBMR Plus 2023; 7:e10756. [PMID: 37457881 PMCID: PMC10339089 DOI: 10.1002/jbm4.10756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/17/2023] [Indexed: 07/18/2023] Open
Abstract
Human skeletal hemodynamics remain understudied. Neither assessments in weight-bearing bones during walking nor following periods of immobility exist, despite knowledge of altered nutrient-artery characteristics after short-duration unloading in rodents. We studied 12 older adults (8 females, aged 59 ± 3 years) who participated in ambulatory near-infrared spectroscopy (NIRS) assessments of tibial hemodynamics before (PRE) and after (POST) 14 days of head-down bed rest (HDBR), with most performing daily resistance and aerobic exercise countermeasures during HDBR. Continual simultaneous NIRS recordings were acquired over the proximal anteromedial tibial prominence of the right lower leg and ipsilateral lateral head of the gastrocnemius muscle during supine rest, walking, and standing. During 10 minutes of walking, desaturation kinetics in the tibia were slower (time to 95% nadir values 125.4 ± 56.8 s versus 55.0 ± 30.1 s, p = 0.0014). Tibial tissue saturation index (TSI) immediately fell (-9.9 ± 4.55) and did not completely recover by the end of 10 minutes of walking (-7.4 ± 6.7%, p = 0.027). Upon standing, total hemoglobin (tHb) kinetics were faster in the tibia (p < 0.0001), whereas HDBR resulted in faster oxygenated hemoglogin (O2Hb) kinetics in both tissues (p = 0.039). After the walk-to-stand transition, changes in O2Hb (p = 0.0022) and tHb (p = 0.0047) were attenuated in the tibia alone after bed rest. Comparisons of NIRS-derived variables during ambulation and changes in posture revealed potentially deleterious adaptations of feed vessels after HDBR. We identify important and novel tibial hemodynamics in humans during ambulation before and after bed rest, necessitating further investigation. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Eric T Hedge
- Schlegel‐UW Research Institute for AgingWaterlooCanada
- Department of Kinesiology and Health SciencesUniversity of WaterlooWaterlooCanada
| | - Laurence Vico
- U1059 INSERM—SAINBIOSE (Santé Ingéniérie Biologie St‐Etienne) Campus Santé InnovationUniversité Jean MonnetSaint‐Priest‐en‐JarezFrance
| | | | | |
Collapse
|
3
|
Meertens R, Knapp KM, Strain WD, Casanova F, Ball S, Fulford J, Thorn C. In vivo Measurement of Intraosseous Vascular Haemodynamic Markers in Human Bone Tissue Utilising Near Infrared Spectroscopy. Front Physiol 2021; 12:738239. [PMID: 34630158 PMCID: PMC8497693 DOI: 10.3389/fphys.2021.738239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Poor vascular health is associated with reduced bone strength and increased risk of fragility fracture. However, direct measurement of intraosseous vascular health is difficult due to the density and mineral content of bone. We investigated the feasibility of using a commercially available continuous wave near infrared spectroscopy (NIRS) system for the investigation of vascular haemodynamics in human bone in vivo. Approach: An arterial occlusion (AO) protocol was developed for obtaining haemodynamic measurements of the proximal tibia and lateral calf, including assessment of the protocol’s intra operator reproducibility. For 36 participants, intraosseous haemodynamics derived by NIRS were compared to alternative tests of bone health based on dual x-ray absorptiometry (DXA) testing and MRI. Main Results: Near infrared spectroscopy markers of haemodynamics of the proximal tibia demonstrated acceptable reproducibility, comparable with reproducibility assessments of alternative modalities measuring intraosseous haemodynamics, and the use of NIRS for measuring muscle. Novel associations have been demonstrated between haemodynamic markers of bone measured with NIRS and body composition and bone mineral density (BMD) measurements obtained with both DXA and MRI. Significance: Near infrared spectroscopy provides inexpensive, non-invasive, safe, and real time data on changes in oxygenated and deoxygenated haemoglobin concentration in bone at the proximal tibia. This study has demonstrated the potential for NIRS to contribute to research investigating the pathophysiological role of vascular dysfunction within bone tissue, but also the limitations and need for further development of NIRS technology.
Collapse
Affiliation(s)
- Robert Meertens
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Karen M Knapp
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | | | - Francesco Casanova
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Susan Ball
- NIHR Applied Research Collaboration South West Peninsula (PenARC), College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Jon Fulford
- NIHR Exeter Clinical Research Facility, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Clare Thorn
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
4
|
Zhang C, Modlesky CM, McCully KK. Measuring tibial hemodynamics and metabolism at rest and after exercise using near-infrared spectroscopy. Appl Physiol Nutr Metab 2021; 46:1354-1362. [PMID: 34019778 DOI: 10.1139/apnm-2021-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The bone vascular system is important, yet evaluation of bone hemodynamics is difficult and expensive. This study evaluated the utility and reliability of near-infrared spectroscopy (NIRS), a portable and relatively inexpensive device, in measuring tibial hemodynamics and metabolic rate. Eleven participants were tested twice using post-occlusive reactive hyperemia technique with the NIRS probes placed on the tibia and the medial gastrocnemius (MG) muscle. Measurements were made at rest and after 2 levels of plantarflexion exercise. The difference between oxygenated and deoxygenated hemoglobin signal could be reliably measured with small coefficients of variation (CV; range 5.7-9.8%) and high intraclass correlation coefficients (ICC; range 0.73-0.91). Deoxygenated hemoglobin rate of change, a potential marker for bone metabolism, also showed good reliability (CV range 7.5-9.8%, ICC range 0.90-0.93). The tibia was characterized with a much slower metabolic rate compared with MG (p < 0.001). While exercise significantly increased MG metabolic rate in a dose-dependent manner (all p < 0.05), no changes were observed for the tibia after exercise compared with rest (all p > 0.05). NIRS is a suitable tool for monitoring hemodynamics and metabolism in the tibia. However, the local muscle exercise protocol utilized in the current study did not influence bone hemodynamics or metabolic rate. Novelty: NIRS can be used to monitor tibial hemodynamics and metabolism with good reliability. Short-duration local muscle exercise increased metabolic rate in muscle but not in bone. High level of loading and exercise volume may be needed to elicit measurable metabolic changes in bone.
Collapse
Affiliation(s)
- Chuan Zhang
- School of Physical Education and Sport, Central China Normal University, Wuhan, Hubei, China
| | | | - Kevin K McCully
- Department of Kinesiology, University of Georgia, Athens, GA, USA
| |
Collapse
|
5
|
Moore CA, Siddiqui Z, Carney GJ, Naaldijk Y, Guiro K, Ferrer AI, Sherman LS, Guvendiren M, Kumar VA, Rameshwar P. A 3D Bioprinted Material That Recapitulates the Perivascular Bone Marrow Structure for Sustained Hematopoietic and Cancer Models. Polymers (Basel) 2021; 13:480. [PMID: 33546275 PMCID: PMC7913313 DOI: 10.3390/polym13040480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Translational medicine requires facile experimental systems to replicate the dynamic biological systems of diseases. Drug approval continues to lag, partly due to incongruencies in the research pipeline that traditionally involve 2D models, which could be improved with 3D models. The bone marrow (BM) poses challenges to harvest as an intact organ, making it difficult to study disease processes such as breast cancer (BC) survival in BM, and to effective evaluation of drug response in BM. Furthermore, it is a challenge to develop 3D BM structures due to its weak physical properties, and complex hierarchical structure and cellular landscape. To address this, we leveraged 3D bioprinting to create a BM structure with varied methylcellulose (M): alginate (A) ratios. We selected hydrogels containing 4% (w/v) M and 2% (w/v) A, which recapitulates rheological and ultrastructural features of the BM while maintaining stability in culture. This hydrogel sustained the culture of two key primary BM microenvironmental cells found at the perivascular region, mesenchymal stem cells and endothelial cells. More importantly, the scaffold showed evidence of cell autonomous dedifferentiation of BC cells to cancer stem cell properties. This scaffold could be the platform to create BM models for various diseases and also for drug screening.
Collapse
Affiliation(s)
- Caitlyn A. Moore
- Department of Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; (C.A.M.); (G.J.C.); (Y.N.); (K.G.); (A.I.F.); (L.S.S.)
- Department of Medicine, Rutgers School of Graduate Studies, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Zain Siddiqui
- Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd, Newark, NJ 07102, USA; (Z.S.); (M.G.); (V.A.K.)
| | - Griffin J. Carney
- Department of Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; (C.A.M.); (G.J.C.); (Y.N.); (K.G.); (A.I.F.); (L.S.S.)
| | - Yahaira Naaldijk
- Department of Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; (C.A.M.); (G.J.C.); (Y.N.); (K.G.); (A.I.F.); (L.S.S.)
| | - Khadidiatou Guiro
- Department of Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; (C.A.M.); (G.J.C.); (Y.N.); (K.G.); (A.I.F.); (L.S.S.)
| | - Alejandra I. Ferrer
- Department of Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; (C.A.M.); (G.J.C.); (Y.N.); (K.G.); (A.I.F.); (L.S.S.)
- Department of Medicine, Rutgers School of Graduate Studies, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Lauren S. Sherman
- Department of Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; (C.A.M.); (G.J.C.); (Y.N.); (K.G.); (A.I.F.); (L.S.S.)
- Department of Medicine, Rutgers School of Graduate Studies, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Murat Guvendiren
- Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd, Newark, NJ 07102, USA; (Z.S.); (M.G.); (V.A.K.)
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd, Newark, NJ 07102, USA
| | - Vivek A. Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd, Newark, NJ 07102, USA; (Z.S.); (M.G.); (V.A.K.)
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd, Newark, NJ 07102, USA
- Department of Restorative Dentistry, Rutgers School of Dental Medicine, 110 Bergen St, Newark, NJ 07103, USA
| | - Pranela Rameshwar
- Department of Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; (C.A.M.); (G.J.C.); (Y.N.); (K.G.); (A.I.F.); (L.S.S.)
| |
Collapse
|
6
|
Zhang C, McCully KK. The Case for Measuring Long Bone Hemodynamics With Near-Infrared Spectroscopy. Front Physiol 2020; 11:615977. [PMID: 33391034 PMCID: PMC7775486 DOI: 10.3389/fphys.2020.615977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/30/2020] [Indexed: 01/12/2023] Open
Abstract
Diseases and associated fragility of bone is an important medical issue. There is increasing evidence that bone health is related to blood flow and oxygen delivery. The development of non-invasive methods to evaluate bone blood flow and oxygen delivery promise to improve the detection and treatment of bone health in human. Near-infrared spectroscopy (NIRS) has been used to evaluate oxygen levels, blood flow, and metabolism in skeletal muscle and brain. While the limited penetration depth of NIRS restricts its application, NIRS studies have been performed on the medial aspect of the tibia and some other prominent bone sites. Two approaches using NIRS to evaluate bone health are discussed: (1) the rate of re-oxygenation of bone after a short bout of ischemia, and (2) the dynamics of oxygen levels during an intervention such as resistance exercise. Early studies have shown these approaches to have the potential to evaluate bone vascular health as well as the predicted efficacy of an intervention before changes in bone composition are detectable. Future studies are needed to fully develop and exploit the use of NIRS technology for the study of bone health.
Collapse
Affiliation(s)
- Chuan Zhang
- Department of Kinesiology, University of Georgia, Athens, GA, United States
| | - Kevin K McCully
- Department of Kinesiology, University of Georgia, Athens, GA, United States
| |
Collapse
|
7
|
Meertens R, Casanova F, Knapp KM, Thorn C, Strain WD. Use of near-infrared systems for investigations of hemodynamics in human in vivo bone tissue: A systematic review. J Orthop Res 2018; 36:2595-2603. [PMID: 29727022 DOI: 10.1002/jor.24035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/27/2018] [Indexed: 02/04/2023]
Abstract
A range of technologies using near infrared (NIR) light have shown promise at providing real time measurements of hemodynamic markers in bone tissue in vivo, an exciting prospect given existing difficulties in measuring hemodynamics in bone tissue. This systematic review aimed to evaluate the evidence for this potential use of NIR systems, establishing their potential as a research tool in this field. Major electronic databases including MEDLINE and EMBASE were searched using pre-planned search strategies with broad scope for any in vivo use of NIR technologies in human bone tissue. Following identification of studies by title and abstract screening, full text inclusion was determined by double blind assessment using predefined criteria. Full text studies for inclusion were data extracted using a predesigned proforma and quality assessed. Narrative synthesis was appropriate given the wide heterogeneity of included studies. Eighty-eight full text studies fulfilled the inclusion criteria, 57 addressing laser Doppler flowmetry (56 intra-operatively), 21 near infrared spectroscopy, and 10 photoplethysmography. The heterogeneity of the methodologies included differing hemodynamic markers, measurement protocols, anatomical locations, and research applications, making meaningful direct comparisons impossible. Further, studies were often limited by small sample sizes with potential selection biases, detection biases, and wide variability in results between participants. Despite promising potential in the use of NIR light to interrogate bone circulation, the application of NIR systems in bone requires rigorous assessment of the reproducibility of potential hemodynamic markers and further validation of these markers against alternative physiologically relevant reference standards. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2595-2603, 2018.
Collapse
Affiliation(s)
- Robert Meertens
- Medical Imaging, University of Exeter Medical School, South Cloisters, St Luke's Campus, Heavitree Road, Exeter EX2 1LU, United Kingdom
| | - Francesco Casanova
- Diabetes and Vascular Research Centre, University of Exeter Medical School and National Institute of Health Research Exeter Clinical Research Facility, Barrack Rd, Exeter EX2 5DW, United Kingdom
| | - Karen M Knapp
- Medical Imaging, University of Exeter Medical School, South Cloisters, St Luke's Campus, Heavitree Road, Exeter EX2 1LU, United Kingdom
| | - Clare Thorn
- Diabetes and Vascular Research Centre, University of Exeter Medical School and National Institute of Health Research Exeter Clinical Research Facility, Barrack Rd, Exeter EX2 5DW, United Kingdom
| | - William David Strain
- Diabetes and Vascular Research Centre, University of Exeter Medical School and National Institute of Health Research Exeter Clinical Research Facility, Barrack Rd, Exeter EX2 5DW, United Kingdom
| |
Collapse
|
8
|
Draghici AE, Potart D, Hollmann JL, Pera V, Fang Q, DiMarzio CA, Taylor JA, Niedre MJ, Shefelbine SJ. Near infrared spectroscopy for measuring changes in bone hemoglobin content after exercise in individuals with spinal cord injury. J Orthop Res 2018; 36:183-191. [PMID: 28561268 PMCID: PMC5711624 DOI: 10.1002/jor.23622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/19/2017] [Indexed: 02/04/2023]
Abstract
Bone blood perfusion has an essential role in maintaining a healthy bone. However, current methods for measuring bone blood perfusion are expensive and highly invasive. This study presents a custom built near-infrared spectroscopy (NIRS) instrument to measure changes in bone blood perfusion. We demonstrated the efficacy of this device by monitoring oxygenated and deoxygenated hemoglobin changes in the human tibia during and after exercise in able-bodied and in individuals with spinal cord injury (SCI), a population with known impaired peripheral blood perfusion. Nine able-bodied individuals and six volunteers with SCI performed a 10 min rowing exercise (functional electrical stimulation rowing for those with SCI). With exercise, during rowing, able-bodied showed an increase in deoxygenated hemoglobin in the tibia. Post rowing, able-bodied showed an increase in total blood content, characterized by an increase in total hemoglobin content due primarily to an increase in deoxygenated hemoglobin. During rowing and post-rowing, those with SCI showed no change in total blood content in the tibia. The current study demonstrates that NIRS can non-invasively detect changes in hemoglobin concentration in the tibia. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:183-191, 2018.
Collapse
Affiliation(s)
- Adina E. Draghici
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Diane Potart
- Université de Technologie Compiègne, Compiègne, France
| | | | - Vivian Pera
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Qianqian Fang
- Department of Bioengineering, Northeastern University, Boston, MA, USA,Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
| | - Charles A. DiMarzio
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
| | - J. Andrew Taylor
- Cardiovascular Research Laboratory, Spaulding Rehabilitation Hospital, Cambridge, MA, USA,Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Mark J. Niedre
- Department of Bioengineering, Northeastern University, Boston, MA, USA,Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
| | - Sandra J. Shefelbine
- Department of Bioengineering, Northeastern University, Boston, MA, USA,Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
9
|
Binzoni T, Spinelli L. Near-infrared photons: a non-invasive probe for studying bone blood flow regulation in humans. J Physiol Anthropol 2015. [PMID: 26205147 PMCID: PMC4513383 DOI: 10.1186/s40101-015-0066-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The study of bone blood flow regulation in humans has always represented a difficult task for the clinician and the researcher. Classical measurement techniques imply the presence of ionizing radiation or contrast agents, or they are slow or cannot be repeated too often in time. In the present review, we would like to give a perspective on how the optical approach might overcome some of these problems and give unique solutions to the study of bone blood flow regulation. We hope that the present contribution will encourage the scientific community to put a greater attention on this approach.
Collapse
Affiliation(s)
- Tiziano Binzoni
- Département de Neurosciences Fondamentales, University of Geneva, Geneva, Switzerland. .,Département de l'Imagerie et des Sciences de l'Information Médicale, University Hospital, Geneva, Switzerland.
| | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy.
| |
Collapse
|
10
|
Farzam P, Lindner C, Weigel UM, Suarez M, Urbano-Ispizua A, Durduran T. Noninvasive characterization of the healthy human manubrium using diffuse optical spectroscopies. Physiol Meas 2014; 35:1469-91. [DOI: 10.1088/0967-3334/35/7/1469] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Farzam P, Zirak P, Binzoni T, Durduran T. Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy. Physiol Meas 2013; 34:839-57. [DOI: 10.1088/0967-3334/34/8/839] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Binzoni T, Tchernin D, Hyacinthe JN, Van De Ville D, Richiardi J. Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals. Physiol Meas 2013; 34:N25-40. [PMID: 23443008 DOI: 10.1088/0967-3334/34/3/n25] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human bone blood flow, mean blood speed and the number of moving red blood cells were assessed (in arbitrary units), as a function of time, during one cardiac cycle. The measurements were obtained non-invasively on five volunteers by laser-Doppler flowmetry at large interoptode spacing. The investigated bones included: patella, clavicle, tibial diaphysis and tibial malleolus. As hypothesized, we found that in all bones the number of moving cells remains constant during cardiac cycles. Therefore, we concluded that the pulsatile nature of blood flow must be completely determined by the mean blood speed and not by changes in blood volume (vessels dilation). Based on these results, it is finally demonstrated using a mathematical model (derived from the radiative transport theory) that photoplethysmographic (PPG) pulsations observed by others in the literature, cannot be generated by oscillations in blood oxygen saturation, which is physiologically linked to blood speed. In fact, possible oxygen saturation changes during pulsations decrease the amplitude of PPG pulsations due to specific features of the PPG light source. It is shown that a variation in blood oxygen saturation of 3% may induce a negative change of ∼1% in the PPG signal. It is concluded that PPG pulsations are determined by periodic 'positive' changes of the reduced scattering coefficient of the tissue and/or the absorption coefficient at constant blood volume. No explicit experimental PPG measurements have been performed. As a by-product of this study, an estimation of the arterial pulse wave velocity obtained from the analysis of the blood flow pulsations give a value of 7.8 m s(-1) (95% confidence interval of the sample mean distribution: [6.7, 9.5] m s(-1)), which is perfectly compatible with data in the literature. We hope that this note will contribute to a better understanding of PPG signals and to further develop the domain of the vascular physiology of human bone.
Collapse
Affiliation(s)
- Tiziano Binzoni
- Département de Neurosciences Fondamentales, University of Geneva, Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
13
|
Binzoni T, Boggett D, Van De Ville D. Laser-Doppler flowmetry at large interoptode spacing in human tibia diaphysis: Monte Carlo simulations and preliminary experimental results. Physiol Meas 2011; 32:N33-53. [DOI: 10.1088/0967-3334/32/11/n01] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Aziz SM, Khambatta F, Vaithianathan T, Thomas JC, Clark JM, Marshall R. A near infrared instrument to monitor relative hemoglobin concentrations of human bone tissue in vitro and in vivo. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2010; 81:043111. [PMID: 20441329 DOI: 10.1063/1.3398450] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A continuous wave near infrared instrument has been developed to monitor in vivo changes in the hemoglobin concentration of the trabecular compartment of human bone. The transmitter uses only two laser diodes of wavelengths 685 and 830 nm, and the receiver uses a single silicon photodiode operating in the photovoltaic mode. The functioning of the instrument and the depth of penetration of the near infrared signals was determined in vitro using tissue-equivalent phantoms. The instrument achieves a depth of penetration of approximately 2 cm for an optode separation of 4 cm and, therefore, has the capacity to interrogate the trabecular compartment of human bone. The functioning of the instrument was tested in vivo to evaluate the relative oxy-hemoglobin (HbO(2)) and deoxy-hemoglobin (Hb) concentrations of the proximal tibial bone of apparently healthy, normal weight, adult subjects in response to a 3 min on, 5 min off, vascular occlusion protocol. The traces of the relative Hb and HbO(2) concentrations obtained were reproducible in controlled conditions. The instrument is relatively simple and flexible, and offers an inexpensive platform for further studies to obtain normative data for healthy cohorts, and to evaluate disease-specific performance characteristics for cohorts with vasculopathies of bone.
Collapse
Affiliation(s)
- Syed Mahfuzul Aziz
- School of Electrical and Information Engineering, University of South Australia, Mawson Lakes, South Australia 5095, Australia.
| | | | | | | | | | | |
Collapse
|
15
|
Binzoni T, Leung TS, Van De Ville D. The photo-electric current in laser-Doppler flowmetry by Monte Carlo simulations. Phys Med Biol 2009; 54:N303-18. [DOI: 10.1088/0031-9155/54/14/n03] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|