1
|
Qu N, Wan Y, Sui X, Sui T, Yang Y. Potential molecular mechanisms of ETV6-RUNX1-positive B progenitor cell cluster in acute lymphoblastic leukemia revealed by single-cell RNA sequencing. PeerJ 2024; 12:e18445. [PMID: 39498293 PMCID: PMC11533907 DOI: 10.7717/peerj.18445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024] Open
Abstract
Aim This study was to explore role of immune landscape and the immune cells in acute lymphoblastic leukemia (ALL) progression. Background The most prevalent genetic alteration in childhood ALL is the ETV6-RUNX1 fusion. The increased proliferation of B progenitor cells could expedite the disease's progression due to irregularities in the cell cycle. Nevertheless, the mechanisms by which particular cell clusters influence the cell cycle and promote the advancement of ALL are still not well understood. Objective This study was to explore role of immune landscape and the immune cells in ALL progression. Methods Single-cell RNA sequencing (scRNA-seq) data of ETV6-RUNX1 and healthy pediatric samples obtained from GSE132509 were clustered and annotated using the Seurat package, and differentially highly expressed genes identified in each cluster were analyzed using DAVID for pathway annotation. Chromosome amplification and deletion were analyzed using the inferCNV package. SCENIC evaluated the regulation of transcription factors and target gene formation in cells. cellphoneDB and CellChat were served to infer ligand-receptor pairs that mediate interactions between subpopulations. The role of the target gene in regulating ALL progression was assessed using RT-qPCR, Transwell and scratch healing assays. Results The bone marrow mononuclear cells (BMMCs) from ETV6-RUNX1 and healthy pediatric samples in GSE132509 were divided into 11 clusters, and B cell cluster 1 was identified as B progenitor cell, which was amplified on chromosome 6p. B progenitor cells were divided into seven clusters. Expression levels of amplified genes in chromosome 6p of B progenitor cell cluster 5 were the highest, and its specific highly expressed genes were annotated to pathways promoting cell cycle progression. Regulons formed in B progenitor cell cluster 5 were all involved in promoting cell cycle progression, so it was regarded as the B progenitor cell cluster that drives cell cycle progression. The key regulator of the B progenitor cell is E2F1, which promotes the migration and invasion ability of the cell line HAP1. The major ligand-receptor pairs that mediate the communication of B progenitor cell cluster 5 with cytotoxic NK/T cells or naive T cells included FAM3C-CLEC2D, CD47-SIRPG, HLAE-KLRC2, and CD47-KLRC2. HLAE-KLRC1 and TGFB1-(TGFBR1+TGFBR2). Conclusion This study outlined the immune cell landscape of ETV6-RUNX1 ALL and identified chromosome 6p amplification in B progenitor cells, described the major B progenitor cell cluster driving cell cycle progression and its potential regulatory mechanisms on NK cells and T cells, providing cellular and molecular insights into ETV6-RUNX1 ALL.
Collapse
Affiliation(s)
- Ning Qu
- Pediatrics Department, Jinzhou Central Hospital, Jinzhou, China
| | - Yue Wan
- Oncology Department, Jinzhou Central Hospital, Jinzhou, China
| | - Xin Sui
- Neurosurgery Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Tianyi Sui
- Clinical Medicine Department, Dalian Medical University, Dalian, China
| | - Yang Yang
- Neurosurgery Department, Jinzhou Central Hospital, Jinzhou, China
| |
Collapse
|
2
|
Lai W, Wang X, Liu L, Xu L, Mao L, Tan J, Zha X, Zhan H, Lei W, Lan Y, Chen G, Li Y, Luo OJ. Single-cell profiling of T cells uncovers a tissue-resident memory-like T-cell subset associated with bidirectional prognosis for B-cell acute lymphoblastic leukemia. Front Immunol 2022; 13:957436. [PMID: 36532049 PMCID: PMC9757161 DOI: 10.3389/fimmu.2022.957436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction The character and composition of leukemia-related T cells are closely related to the treatment response and prognosis for patients. Though B cell-acute lymphoblastic leukemia (B-ALL) patients have benefited from immune-based approaches, such as chimeric antigen receptor T cells therapy, some of them still end with poor prognosis, especially for adult patients. Therefore, deep understanding of the developmental relationship between T cell subtypes in relation to B-ALL patient prognosis is urgently needed. Methods We analyzed the peripheral blood T cell single-cell RNA sequencing data of three B-ALL patients, using data from 11 healthy individuals as controls. In total, 16,143 and 53,701 T cells from B-ALL patients and healthy adults, respectively, were objectively analyzed for detailed delineation of 13 distinct T cell clusters. Cluster-specific genes were used as marker genes to annotate each T cell subtype. Results Unbiased analysis enabled the discovery of circulating CD103+ T cell (CD3+CD103+MKI67+), also defined as tissue-resident memory-like T (Trm-like) cell, populations were elevated in B-ALL patients, which expressed high level of cell proliferation and exhaustion related genes. In addition, cell fate trajectory analysis showed these Trm-like cells, which shared T-cell receptor (TCR) clonotypes with exhausted T (Tex) cells and effector T (Teff) cells, were supposed to transition into Teff cells; however, mainly transformed into Tex cells in leukemia environment. More importantly, Trm-like cells transformation into Teff cells and Tex cells potentially led to favorable or poor prognosis for B-ALL patients, respectively. Conclusion In sum, a circulating Trm-like cell subset with high level expression of cell proliferation and exhaustion related genes was elevated in B-ALL patients. The bidirectional developmental potential of these T cells into Teff or Tex is closely associated with favorable or poor prognosis, respectively. Together, our study provided a unique insight of alteration of leukemia related T cells, also showed a potential immunotherapy direction and prognosis assessment model for B-ALL patients.
Collapse
Affiliation(s)
- Wenpu Lai
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaofang Wang
- Department of Hematology/Oncology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lian Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Ling Xu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Lipeng Mao
- Department of Microbiology and Immunology, School of Medicine, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, China
| | - Jiaxiong Tan
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Huien Zhan
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wen Lei
- Department of Microbiology and Immunology, School of Medicine, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Wang X, Chen Y, Li Z, Huang B, Xu L, Lai J, Lu Y, Zha X, Liu B, Lan Y, Li Y. Single-Cell RNA-Seq of T Cells in B-ALL Patients Reveals an Exhausted Subset with Remarkable Heterogeneity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101447. [PMID: 34365737 PMCID: PMC8498858 DOI: 10.1002/advs.202101447] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/27/2021] [Indexed: 06/02/2023]
Abstract
Characterization of functional T cell clusters is key to developing strategies for immunotherapy and predicting clinical responses in leukemia. Here, single-cell RNA sequencing is performed with T cells sorted from the peripheral blood of healthy individuals and patients with B cell-acute lymphoblastic leukemia (B-ALL). Unbiased bioinformatics analysis enabled the authors to identify 13 T cell clusters in the patients based on their molecular properties. All 11 major T cell subsets in healthy individuals are found in the patients with B-ALL, with the counterparts in the patients universally showing more activated characteristics. Two exhausted T cell populations, characterized by up-regulation of TIGIT, PDCD1, HLADRA, LAG3, and CTLA4 are specifically discovered in B-ALL patients. Of note, these exhausted T cells possess remarkable heterogeneity, and ten sub-clusters are further identified, which are characterized by different cell cycle phases, naïve states, and GNLY (coding granulysin) expression. Coupled with single-cell T cell receptor repertoire profiling, diverse originations of the exhausted T cells in B-ALL are suggested, and clonally expanded exhausted T cells are likely to originate from CD8+ effector memory/terminal effector cells. Together, these data provide for the first-time valuable insights for understanding exhausted T cell populations in leukemia.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of HematologyFirst Affiliated HospitalJinan UniversityNo. 601 West of Huangpu AvenueGuangzhou510632China
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologySchool of MedicineJinan UniversityGuangzhou510632China
| | - Yanjuan Chen
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologySchool of MedicineJinan UniversityGuangzhou510632China
| | - Zongcheng Li
- State Key Laboratory of Experimental HematologyInstitute of HematologyFifth Medical Center of Chinese PLA General HospitalBeijing100071China
| | - Bingyan Huang
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologySchool of MedicineJinan UniversityGuangzhou510632China
| | - Ling Xu
- Department of HematologyFirst Affiliated HospitalJinan UniversityNo. 601 West of Huangpu AvenueGuangzhou510632China
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologySchool of MedicineJinan UniversityGuangzhou510632China
| | - Jing Lai
- Department of HematologyFirst Affiliated HospitalJinan UniversityNo. 601 West of Huangpu AvenueGuangzhou510632China
| | - Yuhong Lu
- Department of HematologyFirst Affiliated HospitalJinan UniversityNo. 601 West of Huangpu AvenueGuangzhou510632China
| | - Xianfeng Zha
- Department of Clinical LaboratoryFirst Affiliated HospitalSchool of MedicineJinan UniversityNo. 601 West of Huangpu AvenueGuangzhou510632China
| | - Bing Liu
- State Key Laboratory of Experimental HematologyInstitute of HematologyFifth Medical Center of Chinese PLA General HospitalBeijing100071China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologySchool of MedicineJinan UniversityGuangzhou510632China
| | - Yangqiu Li
- Department of HematologyFirst Affiliated HospitalJinan UniversityNo. 601 West of Huangpu AvenueGuangzhou510632China
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologySchool of MedicineJinan UniversityGuangzhou510632China
| |
Collapse
|
4
|
Jin Z, Lan T, Zhao Y, Du J, Chen J, Lai J, Xu L, Chen S, Zhong X, Wu X, Li Y. Higher TIGIT +CD226 - γδ T cells in Patients with Acute Myeloid Leukemia. Immunol Invest 2020; 51:40-50. [PMID: 32819181 DOI: 10.1080/08820139.2020.1806868] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The diverse structural and functional heterogeneity of γδ T cells is related to their distinct role in cancer immunity. The different phenotypes of γδ T cells in patients with acute myeloid leukemia (AML) is far from clear. In particular, the expression pattern of co-inhibitory and co-stimulatory receptors on γδ T cells remains unknown. In this study, we analyzed the distribution of γδ T cell subsets by expression of the immune checkpoint co-inhibitor TIGIT (T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain) and its competing co-stimulatory receptor CD226 in AML patients of different clinical statuses (including de novo AML, AML in non-remission (NR), and AML in complete remission (CR)). Our data demonstrated an imbalanced distribution of TIGIT and CD226 on γδ T cells with a decrease in CD226+ γδ T cells and an increase in TIGIT+ γδ T cells in de novo AML patients, while TIGIT-CD226+ γδ T cells were restored in AML patients who achieved CR after chemotherapy. Moreover, the patients who had higher TIGIT+CD226- γδ T cells showed lower overall survival rate for non-M3 AML, which may be considered a novel prognostic immune biomarker. In conclusion, our study reveals for the first time that imbalance in the TIGIT/CD226 axis might be related to different clinical outcomes for AML patients. ABBREVIATIONS AML: acute myeloid leukemia; CR: complete remission; ICs: immune checkpoints; PD-1: programmed death-1; γδ T cells: gamma delta T cells; TCR: T cell receptor; MHC: major histocompatibility complex; TIGIT: T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain; NK: natural killer; PB: Peripheral blood; NR: non-remission; FAB: French-American-British; WHO: World Health Organization; HIs: healthy individuals; OS: overall survival.
Collapse
Affiliation(s)
- Zhenyi Jin
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China.,Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Tianbi Lan
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Yun Zhao
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Jinxia Du
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Jie Chen
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jing Lai
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ling Xu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Shaohua Chen
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Xueyun Zhong
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China.,Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiuli Wu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|