1
|
Suzuki M. Enhancing the sensitivity of immunoassays toward single-cell secretion analysis. ANAL SCI 2024; 40:1799-1800. [PMID: 39316246 DOI: 10.1007/s44211-024-00651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Affiliation(s)
- Masato Suzuki
- Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan.
| |
Collapse
|
2
|
Liu X, Zheng X. Microfluidic-Based Electrical Operation and Measurement Methods in Single-Cell Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:6359. [PMID: 39409403 PMCID: PMC11478560 DOI: 10.3390/s24196359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024]
Abstract
Cellular heterogeneity plays a significant role in understanding biological processes, such as cell cycle and disease progression. Microfluidics has emerged as a versatile tool for manipulating single cells and analyzing their heterogeneity with the merits of precise fluid control, small sample consumption, easy integration, and high throughput. Specifically, integrating microfluidics with electrical techniques provides a rapid, label-free, and non-invasive way to investigate cellular heterogeneity at the single-cell level. Here, we review the recent development of microfluidic-based electrical strategies for single-cell manipulation and analysis, including dielectrophoresis- and electroporation-based single-cell manipulation, impedance- and AC electrokinetic-based methods, and electrochemical-based single-cell detection methods. Finally, the challenges and future perspectives of the microfluidic-based electrical techniques for single-cell analysis are proposed.
Collapse
Affiliation(s)
| | - Xiaolin Zheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
3
|
Hu S, Ji J, Chen X, Tong R. Dielectrophoresis: Measurement technologies and auxiliary sensing applications. Electrophoresis 2024; 45:1574-1596. [PMID: 38738705 DOI: 10.1002/elps.202300299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Dielectrophoresis (DEP), which arises from the interaction between dielectric particles and an aqueous solution in a nonuniform electric field, contributes to the manipulation of nano and microparticles in many fields, including colloid physics, analytical chemistry, molecular biology, clinical medicine, and pharmaceutics. The measurement of the DEP force could provide a more complete solution for verifying current classical DEP theories. This review reports various imaging, fluidic, optical, and mechanical approaches for measuring the DEP forces at different amplitudes and frequencies. The integration of DEP technology into sensors enables fast response, high sensitivity, precise discrimination, and label-free detection of proteins, bacteria, colloidal particles, and cells. Therefore, this review provides an in-depth overview of DEP-based fabrication and measurements. Depending on the measurement requirements, DEP manipulation can be classified into assistance and integration approaches to improve sensor performance. To this end, an overview is dedicated to developing the concept of trapping-on-sensing, improving its structure and performance, and realizing fully DEP-assisted lab-on-a-chip systems.
Collapse
Affiliation(s)
- Sheng Hu
- College of Information Science and Engineering, Northeastern University, Shenyang, P. R. China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, P. R. China
| | - Junyou Ji
- College of Information Science and Engineering, Northeastern University, Shenyang, P. R. China
| | - Xiaoming Chen
- College of Information Science and Engineering, Northeastern University, Shenyang, P. R. China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, P. R. China
| | - Ruijie Tong
- College of Information Science and Engineering, Northeastern University, Shenyang, P. R. China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, P. R. China
| |
Collapse
|
4
|
Ino K, Konno A, Utagawa Y, Kanno T, Iwase K, Abe H, Shiku H. Fabrication of Two-Layer Microfluidic Devices with Porous Electrodes Using Printed Sacrificial Layers. MICROMACHINES 2024; 15:1054. [PMID: 39203705 PMCID: PMC11356774 DOI: 10.3390/mi15081054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024]
Abstract
Two-layer microfluidic devices with porous membranes have been widely used in bioapplications such as microphysiological systems (MPS). Porous electrodes, instead of membranes, have recently been incorporated into devices for electrochemical cell analysis. Generally, microfluidic channels are prepared using soft lithography and assembled into two-layer microfluidic devices. In addition to soft lithography, three-dimensional (3D) printing has been widely used for the direct fabrication of microfluidic devices because of its high flexibility. However, this technique has not yet been applied to the fabrication of two-layer microfluidic devices with porous electrodes. This paper proposes a novel fabrication process for this type of device. In brief, Pluronic F-127 ink was three-dimensionally printed in the form of sacrificial layers. A porous Au electrode, fabricated by sputtering Au on track-etched polyethylene terephthalate membranes, was placed between the top and bottom sacrificial layers. After covering with polydimethylsiloxane, the sacrificial layers were removed by flushing with a cold solution. To the best of our knowledge, this is the first report on the sacrificial approach-based fabrication of two-layer microfluidic devices with a porous electrode. Furthermore, the device was used for electrochemical assays of serotonin and could successfully measure concentrations up to 5 µM. In the future, this device can be used for MPS applications.
Collapse
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering, Tohoku University, 6-6-11-604 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - An Konno
- Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Yoshinobu Utagawa
- Graduate School of Engineering, Tohoku University, 6-6-11-604 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Taiyo Kanno
- Graduate School of Engineering, Tohoku University, 6-6-11-604 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Kazuyuki Iwase
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Hiroya Abe
- Graduate School of Engineering, Tohoku University, 6-6-11-604 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki-aza Aoba 6-3, Aoba-ku, Sendai 980-8578, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, 6-6-11-604 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
- Graduate School of Environmental Studies, Tohoku University, 6-6-11-604 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
5
|
Gong L, Cretella A, Lin Y. Microfluidic systems for particle capture and release: A review. Biosens Bioelectron 2023; 236:115426. [PMID: 37276636 DOI: 10.1016/j.bios.2023.115426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Microfluidic technology has emerged as a promising tool in various applications, including biosensing, disease diagnosis, and environmental monitoring. One of the notable features of microfluidic devices is their ability to selectively capture and release specific cells, biomolecules, bacteria, and particles. Compared to traditional bulk analysis instruments, microfluidic capture-and-release platforms offer several advantages, such as contactless operation, label-free detection, high accuracy, good sensitivity, and minimal reagent requirements. However, despite significant efforts dedicated to developing innovative capture mechanisms in the past, the release and recovery efficiency of trapped particles have often been overlooked. Many previous studies have focused primarily on particle capture techniques and their efficiency, disregarding the crucial role of successful particle release for subsequent analysis. In reality, the ability to effectively release trapped particles is particularly essential to ensure ongoing, high-throughput analysis. To address this gap, this review aims to highlight the importance of both capture and release mechanisms in microfluidic systems and assess their effectiveness. The methods are classified into two categories: those based on physical principles and those using biochemical approaches. Furthermore, the review offers a comprehensive summary of recent applications of microfluidic platforms specifically designed for particle capture and release. It outlines the designs and performance of these devices, highlighting their advantages and limitations in various target applications and purposes. Finally, the review concludes with discussions on the current challenges faced in the field and presents potential future directions.
Collapse
Affiliation(s)
- Liyuan Gong
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA
| | - Andrew Cretella
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA
| | - Yang Lin
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA.
| |
Collapse
|
6
|
Lv D, Zhang X, Xu M, Cao W, Liu X, Deng J, Yang J, Hu N. Trapping and releasing of single microparticles and cells in a microfluidic chip. Electrophoresis 2022; 43:2165-2174. [PMID: 35730632 DOI: 10.1002/elps.202200091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/25/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022]
Abstract
A microfluidic device was designed and fabricated to capture single microparticles and cells by using hydrodynamic force and selectively release the microparticles and cells of interest via negative dielectrophoresis by activating selected individual microelectrodes. The trap microstructure was optimized based on numerical simulation of the electric field as well as the flow field. The capture and selective release functions of the device were verified by multi-types microparticles with different diameters and K562 cells. The capture efficiencies/release efficiencies were 95.55% ± 0.43%/96.41% ± 1.08% and 91.34% ± 0.01%/93.67% ± 0.36% for microparticles and cells, respectively. By including more traps and microelectrodes, the device can achieve high throughput and realize the visual separation of microparticles/cells of interest in a large number of particle/cell groups.
Collapse
Affiliation(s)
- Dan Lv
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, P. R. China
| | - Xiaoling Zhang
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, P. R. China.,Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, P. R. China
| | - Mengli Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, P. R. China
| | - Wenyue Cao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, P. R. China
| | - Xing Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, P. R. China
| | - Jinan Deng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, P. R. China
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, P. R. China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, P. R. China
| |
Collapse
|
7
|
Hata M, Suzuki M, Yasukawa T. Selective retrieval of antibody-secreting hybridomas in cell arrays based on the dielectrophoresis. Biosens Bioelectron 2022; 209:114250. [PMID: 35395585 DOI: 10.1016/j.bios.2022.114250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/02/2022]
Abstract
A cascade of the formation of cell arrays, the discrimination of cells secreting specific molecules, and the selective retrieval of cells has been developed to harvest antibody-secreting hybridomas in heterogeneous cell populations simply and rapidly. The microwell array device consisted of three-dimensional microband electrodes by assembling both upper and lower substrates perpendicularly. Arrays of hybridomas secreting specific antibodies were prepared by aligning hybridomas in each microwell based on the attractive force of positive dielectrophoresis (p-DEP). Antibody secreted by the hybridomas in the microwells was recognized by the antigen immobilized on the microwells or the membrane surfaces of hybridomas to discriminate hybridomas with the secretion ability. Thereafter, a repulsive force of negative dielectrophoresis (n-DEP) was applied to release the target hybridomas from the microwell array. To harvest the target hybridoma, AC signals could be modulated in the n-DEP frequency region and applied to a pair of microband electrodes located above and below each microwell containing target hybridoma. Thus, the cell-based array system described in this study allowed selective retrieval of single target hybridomas by merely switching from p-DEP to n-DEP after selecting the antibody-secreting hybridomas trapped in each microwell. The development of this high-affinity device could be useful to recover hybridomas producing antibodies in large populations of cells rapidly and effectively.
Collapse
Affiliation(s)
- Misaki Hata
- Graduate School of Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan
| | - Masato Suzuki
- Graduate School of Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan
| | - Tomoyuki Yasukawa
- Graduate School of Science, University of Hyogo, 3-2-1, Kouto, Kamigori, Ako, Hyogo, 678-1297, Japan.
| |
Collapse
|
8
|
Electrofusion of cells with different diameters by generating asymmetrical electric field in the microwell array. ANAL SCI 2022; 38:235-239. [DOI: 10.1007/s44211-022-00072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/01/2022]
|