1
|
Lewis HM, Gupta P, Saunders KDG, Briones S, von Gerichten J, Townsend PA, Velliou E, Beste DJV, Cexus O, Webb R, Bailey MJ. Nanocapillary sampling coupled to liquid chromatography mass spectrometry delivers single cell drug measurement and lipid fingerprints. Analyst 2023; 148:1041-1049. [PMID: 36723178 PMCID: PMC9969958 DOI: 10.1039/d2an01732f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/27/2023] [Indexed: 01/28/2023]
Abstract
This work describes the development of a new approach to measure drug levels and lipid fingerprints in single living mammalian cells. Nanocapillary sampling is an approach that enables the selection and isolation of single living cells under microscope observation. Here, live single cell nanocapillary sampling is coupled to liquid chromatography for the first time. This allows molecular species to be separated prior to ionisation and improves measurement precision of drug analytes. The efficiency of transferring analytes from the sampling capillary into a vial was optimised in this work. The analysis was carried out using standard flow liquid chromatography coupled to widely available mass spectrometry instrumentation, highlighting opportunities for widespread adoption. The method was applied to 30 living cells, revealing cell-to-cell heterogeneity in the uptake of different drug molecules. Using this system, we detected 14-158 lipid features per single cell, revealing the association between bedaquiline uptake and lipid fingerprints.
Collapse
Affiliation(s)
- Holly-May Lewis
- Department of Chemistry, University of Surrey, Guildford, UK.
| | - Priyanka Gupta
- Department of Chemical and Process Engineering, University of Surrey, Guildford, UK
- Centre for 3D Models of Health and Disease, University College London - Division of Surgery and Interventional Science, London, UK
| | | | - Shazneil Briones
- School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | | | - Paul A Townsend
- School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Eirini Velliou
- Department of Chemical and Process Engineering, University of Surrey, Guildford, UK
- Centre for 3D Models of Health and Disease, University College London - Division of Surgery and Interventional Science, London, UK
| | - Dany J V Beste
- School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Olivier Cexus
- School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Roger Webb
- Ion Beam Centre, University of Surrey, Guildford, UK
| | | |
Collapse
|
2
|
Analysis of the intracellular localization of amiodarone using live single-cell mass spectrometry. J Pharm Biomed Anal 2021; 205:114318. [PMID: 34418674 DOI: 10.1016/j.jpba.2021.114318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 01/08/2023]
Abstract
Amiodarone is a well-known antiarrhythmic drug with side effects including phospholipidosis. However, it is not clear how amiodarone and its metabolites are localized in the cell. In the present study, the localization of amiodarone in the cytosol, vacuoles, and lipid droplets of a single HepG2 human hepatocellular carcinoma cell was determined directly using live single-cell mass spectrometry. The cytosol, vacuoles, and lipid droplets of a single HepG2 cell treated with amiodarone were separately captured using a nano-spray tip under a fluorescence microscope after visualizing the lipid droplets using a fluorescent probe. This assay showed a linearity in the measurement of amiodarone levels with R2 values of 0.9996 and 0.9998 in the cell lysates and serum, respectively. The peak intensities of amiodarone and its metabolites in lipid droplets and vacuoles were significantly higher than those in the cytosol, while those in lipid droplets were higher than those in vacuoles. Amiodarone metabolites were detected in both lipid droplets and the cytosol. Live single-cell mass spectrometry combined with fluorescence imaging demonstrated clear localization of amiodarone and its metabolites in lipid droplets separately from the vacuole. This assay system combined with fluorescence imaging could be useful for investigating the intracellular localization of various drugs and their metabolites.
Collapse
|
3
|
Zhu G, Shao Y, Liu Y, Pei T, Li L, Zhang D, Guo G, Wang X. Single-cell metabolite analysis by electrospray ionization mass spectrometry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
4
|
Wood EA, Stopka SA, Zhang L, Mattson S, Maasz G, Pirger Z, Vertes A. Neuropeptide Localization in Lymnaea stagnalis: From the Central Nervous System to Subcellular Compartments. Front Mol Neurosci 2021; 14:670303. [PMID: 34093125 PMCID: PMC8172996 DOI: 10.3389/fnmol.2021.670303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/09/2021] [Indexed: 12/02/2022] Open
Abstract
Due to the relatively small number of neurons (few tens of thousands), the well-established multipurpose model organism Lymnaea stagnalis, great pond snail, has been extensively used to study the functioning of the nervous system. Unlike the more complex brains of higher organisms, L. stagnalis has a relatively simple central nervous system (CNS) with well-defined circuits (e.g., feeding, locomotion, learning, and memory) and identified individual neurons (e.g., cerebral giant cell, CGC), which generate behavioral patterns. Accumulating information from electrophysiological experiments maps the network of neuronal connections and the neuronal circuits responsible for basic life functions. Chemical signaling between synaptic-coupled neurons is underpinned by neurotransmitters and neuropeptides. This review looks at the rapidly expanding contributions of mass spectrometry (MS) to neuropeptide discovery and identification at different granularity of CNS organization. Abundances and distributions of neuropeptides in the whole CNS, eleven interconnected ganglia, neuronal clusters, single neurons, and subcellular compartments are captured by MS imaging and single cell analysis techniques. Combining neuropeptide expression and electrophysiological data, and aided by genomic and transcriptomic information, the molecular basis of CNS-controlled biological functions is increasingly revealed.
Collapse
Affiliation(s)
- Ellen A. Wood
- Department of Chemistry, The George Washington University, Washington, DC, United States
| | - Sylwia A. Stopka
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Linwen Zhang
- Department of Chemistry, The George Washington University, Washington, DC, United States
| | - Sara Mattson
- Department of Chemistry, The George Washington University, Washington, DC, United States
| | - Gabor Maasz
- Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Tihany, Hungary
- Soós Ernő Research and Development Center, University of Pannonia, Nagykanizsa, Hungary
| | - Zsolt Pirger
- Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Tihany, Hungary
| | - Akos Vertes
- Department of Chemistry, The George Washington University, Washington, DC, United States
| |
Collapse
|
5
|
|
6
|
Nakatani K, Izumi Y, Hata K, Bamba T. An Analytical System for Single-Cell Metabolomics of Typical Mammalian Cells Based on Highly Sensitive Nano-Liquid Chromatography Tandem Mass Spectrometry. ACTA ACUST UNITED AC 2020; 9:A0080. [PMID: 32547894 PMCID: PMC7242784 DOI: 10.5702/massspectrometry.a0080] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
Abstract
The rapid development of next-generation sequencing techniques has enabled single-cell genomic and transcriptomic analyses, which have revealed the importance of heterogeneity in biological systems. However, analytical methods to accurately identify and quantify comprehensive metabolites from single mammalian cells with a typical diameter of 10-20 μm are still in the process of development. The aim of this study was to develop a single-cell metabolomic analytical system based on highly sensitive nano-liquid chromatography tandem mass spectrometry (nano-LC-MS/MS) with multiple reaction monitoring. A packed nano-LC column (3-μm particle-size pentafluorophenylpropyl Discovery HSF5 of dimensions 100 μm i.d.×180 mm) was prepared using a slurry technique. The optimized nano-LC-MS/MS method showed 3-132-fold (average value, 26-fold) greater sensitivity than semimicro-LC-MS/MS, and the detection limits for several hydrophilic metabolites, including amino acids and nucleic acid related metabolites were in the sub-fmol range. By combining live single-cell sampling and nano-LC-MS/MS, we successfully detected 18 relatively abundant hydrophilic metabolites (16 amino acids and 2 nucleic acid related metabolites) from single HeLa cells (n=22). Based on single-cell metabolic profiles, the 22 HeLa cells were classified into three distinct subclasses, suggesting differences in metabolic function in cultured HeLa cell populations. Our single-cell metabolomic analytical system represents a potentially useful tool for in-depth studies focused on cell metabolism and heterogeneity.
Collapse
Affiliation(s)
- Kohta Nakatani
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kosuke Hata
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
7
|
Standke SJ, Colby DH, Bensen RC, Burgett AWG, Yang Z. Integrated Cell Manipulation Platform Coupled with the Single-probe for Mass Spectrometry Analysis of Drugs and Metabolites in Single Suspension Cells. J Vis Exp 2019. [PMID: 31282898 DOI: 10.3791/59875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Single cell mass spectrometry (SCMS) enables sensitive detection and accurate analysis of broad ranges of cellular species on the individual-cell level. The single-probe, a microscale sampling and ionization device, can be coupled with a mass spectrometer for on-line, rapid SCMS analysis of cellular constituents under ambient conditions. Previously, the single-probe SCMS technique was primarily used to measure cells immobilized onto a substrate, limiting the types of cells for studies. In the current study, the single-probe SCMS technology has been integrated with a cell manipulation system, typically used for in vitro fertilization. This integrated cell manipulation and analysis platform uses a cell-selection probe to capture identified individual floating cells and transfer the cells to the single-probe tip for microscale lysis, followed by immediate mass spectrometry analysis. This capture and transfer process removes the cells from the surrounding solution prior to analysis, minimizing the introduction of matrix molecules in the mass spectrometry analysis. This integrated setup is capable of SCMS analysis of targeted patient-isolated cells present in body fluids samples (e.g., urine, blood, saliva, etc.), allowing for potential applications of SCMS analysis to human medicine and disease biology.
Collapse
Affiliation(s)
- Shawna J Standke
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Devon H Colby
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Ryan C Bensen
- Department of Chemistry and Biochemistry, University of Oklahoma
| | | | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma;
| |
Collapse
|
8
|
Spangler B, Yang S, Baxter Rath CM, Reck F, Feng BY. A Unified Framework for the Incorporation of Bioorthogonal Compound Exposure Probes within Biological Compartments. ACS Chem Biol 2019; 14:725-734. [PMID: 30908011 DOI: 10.1021/acschembio.9b00008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Compartmentalization is a crucial facet of many biological systems, and key aspects of cellular processes rely on spatial segregation within the cell. While many drug targets reside in specific intracellular compartments, the tools available for assessing compound exposure are generally limited to whole-cell measurements. To address this gap, we recently developed a bioorthogonal chemistry-based method to assess compartment-specific compound exposure and demonstrated its use in Gram-negative bacteria. To expand the applicability of this approach, we report here novel bioorthogonal probe modalities which enable diverse probe incorporation strategies. The probes we developed utilize a cleavable thiocarbamate linker to connect localizing elements such as metabolic substrates to a cyclooctyne moiety which enables the detection of azide-containing molecules. Adducts between the probe and azide-bearing compounds can be recovered and affinity purified after exposure experiments, thus facilitating the mass-spectrometry based analysis used to assess compound exposure. The bioorthogonal system reported here thus provides a valuable new tool for interrogating compartment-specific compound exposure in a variety of biological contexts while retaining a simple and unified sample preparation and analysis workflow.
Collapse
Affiliation(s)
- Benjamin Spangler
- Novartis Institutes for BioMedical Research, Emerville, California 94608, United States
| | - Shengtian Yang
- Novartis Institutes for BioMedical Research, Emerville, California 94608, United States
| | | | - Folkert Reck
- Novartis Institutes for BioMedical Research, Emerville, California 94608, United States
| | - Brian Y. Feng
- Novartis Institutes for BioMedical Research, Emerville, California 94608, United States
| |
Collapse
|
9
|
Standke SJ, Colby DH, Bensen RC, Burgett AWG, Yang Z. Mass Spectrometry Measurement of Single Suspended Cells Using a Combined Cell Manipulation System and a Single-Probe Device. Anal Chem 2019; 91:1738-1742. [PMID: 30644722 PMCID: PMC6640145 DOI: 10.1021/acs.analchem.8b05774] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Existing single cell mass spectrometry (SCMS) sampling platforms are largely designed to work only with immobilized cells and not the suspended cells isolated from patient samples. Here, we present a novel method that integrates a commercially available cell manipulation system commonly used for in vitro fertilization with the Single-probe SCMS sampling technology. The combined Single-probe SCMS/cell manipulating platform is capable of rapidly analyzing intracellular species in real time from a suspension leukemia cell line. A broad range of molecular species was detected, and species of interest were verified using tandem MS (MS/MS). Experimental results were analyzed utilizing statistical analyses such as principle component analysis (PCA) and t-tests. The developed SCMS/cell manipulation system is a versatile tool to provide rapid single cell analysis of broad types of patient cell samples.
Collapse
Affiliation(s)
- Shawna J. Standke
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Devon H. Colby
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ryan C. Bensen
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Anthony W. G. Burgett
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
10
|
Zhang L, Khattar N, Kemenes I, Kemenes G, Zrinyi Z, Pirger Z, Vertes A. Subcellular Peptide Localization in Single Identified Neurons by Capillary Microsampling Mass Spectrometry. Sci Rep 2018; 8:12227. [PMID: 30111831 PMCID: PMC6093924 DOI: 10.1038/s41598-018-29704-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
Single cell mass spectrometry (MS) is uniquely positioned for the sequencing and identification of peptides in rare cells. Small peptides can take on different roles in subcellular compartments. Whereas some peptides serve as neurotransmitters in the cytoplasm, they can also function as transcription factors in the nucleus. Thus, there is a need to analyze the subcellular peptide compositions in identified single cells. Here, we apply capillary microsampling MS with ion mobility separation for the sequencing of peptides in single neurons of the mollusk Lymnaea stagnalis, and the analysis of peptide distributions between the cytoplasm and nucleus of identified single neurons that are known to express cardioactive Phe-Met-Arg-Phe amide-like (FMRFamide-like) neuropeptides. Nuclei and cytoplasm of Type 1 and Type 2 F group (Fgp) neurons were analyzed for neuropeptides cleaved from the protein precursors encoded by alternative splicing products of the FMRFamide gene. Relative abundances of nine neuropeptides were determined in the cytoplasm. The nuclei contained six of these peptides at different abundances. Enabled by its relative enrichment in Fgp neurons, a new 28-residue neuropeptide was sequenced by tandem MS.
Collapse
Affiliation(s)
- Linwen Zhang
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Nikkita Khattar
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Ildiko Kemenes
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Gyorgy Kemenes
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Zita Zrinyi
- Department of Experimental Zoology, Balaton Limnological Institute, MTA Center for Ecological Research, 8237, Tihany, Hungary
| | - Zsolt Pirger
- Department of Experimental Zoology, Balaton Limnological Institute, MTA Center for Ecological Research, 8237, Tihany, Hungary
| | - Akos Vertes
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
11
|
Bioinspired, nanoscale approaches in contemporary bioanalytics (Review). Biointerphases 2018; 13:040801. [DOI: 10.1116/1.5037582] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Yang Y, Huang Y, Wu J, Liu N, Deng J, Luan T. Single-cell analysis by ambient mass spectrometry. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.02.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Guillaume-Gentil O, Rey T, Kiefer P, Ibáñez AJ, Steinhoff R, Brönnimann R, Dorwling-Carter L, Zambelli T, Zenobi R, Vorholt JA. Single-Cell Mass Spectrometry of Metabolites Extracted from Live Cells by Fluidic Force Microscopy. Anal Chem 2017; 89:5017-5023. [PMID: 28363018 DOI: 10.1021/acs.analchem.7b00367] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Single-cell metabolite analysis provides valuable information on cellular function and response to external stimuli. While recent advances in mass spectrometry reached the sensitivity required to investigate metabolites in single cells, current methods commonly isolate and sacrifice cells, inflicting a perturbed state and preventing complementary analyses. Here, we propose a two-step approach that combines nondestructive and quantitative withdrawal of intracellular fluid with subpicoliter resolution using fluidic force microscopy, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The developed method enabled the detection and identification of 20 metabolites recovered from the cytoplasm of individual HeLa cells. The approach was further validated in 13C-glucose feeding experiments, which showed incorporation of labeled carbon atoms into different metabolites. Metabolite sampling, followed by mass spectrometry measurements, enabled the preservation of the physiological context and the viability of the analyzed cell, providing opportunities for complementary analyses of the cell before, during, and after metabolite analysis.
Collapse
Affiliation(s)
- Orane Guillaume-Gentil
- Department of Biology, Institute of Microbiology, ETH Zurich , Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Timo Rey
- Department of Biology, Institute of Microbiology, ETH Zurich , Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Patrick Kiefer
- Department of Biology, Institute of Microbiology, ETH Zurich , Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Alfredo J Ibáñez
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich , 8093 Zurich, Switzerland
| | - Robert Steinhoff
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich , 8093 Zurich, Switzerland
| | - Rolf Brönnimann
- Swiss Federal Laboratories for Material Science and Technology EMPA , 8600 Dübendorf, Switzerland
| | - Livie Dorwling-Carter
- Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, ETH Zurich , 8093 Zurich, Switzerland
| | - Tomaso Zambelli
- Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, ETH Zurich , 8093 Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich , 8093 Zurich, Switzerland
| | - Julia A Vorholt
- Department of Biology, Institute of Microbiology, ETH Zurich , Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| |
Collapse
|
14
|
Single-neuron identification of chemical constituents, physiological changes, and metabolism using mass spectrometry. Proc Natl Acad Sci U S A 2017; 114:2586-2591. [PMID: 28223513 DOI: 10.1073/pnas.1615557114] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The use of single-cell assays has emerged as a cutting-edge technique during the past decade. Although single-cell mass spectrometry (MS) has recently achieved remarkable results, deep biological insights have not yet been obtained, probably because of various technical issues, including the unavoidable use of matrices, the inability to maintain cell viability, low throughput because of sample pretreatment, and the lack of recordings of cell physiological activities from the same cell. In this study, we describe a patch clamp/MS-based platform that enables the sensitive, rapid, and in situ chemical profiling of single living neurons. This approach integrates modified patch clamp technique and modified MS measurements to directly collect and detect nanoliter-scale samples from the cytoplasm of single neurons in mice brain slices. Abundant possible cytoplasmic constituents were detected in a single neuron at a relatively fast rate, and over 50 metabolites were identified in this study. The advantages of direct, rapid, and in situ sampling and analysis enabled us to measure the biological activities of the cytoplasmic constituents in a single neuron, including comparing neuron types by cytoplasmic chemical constituents; observing changes in constituent concentrations as the physiological conditions, such as age, vary; and identifying the metabolic pathways of small molecules.
Collapse
|
15
|
Bergman HM, Lanekoff I. Profiling and quantifying endogenous molecules in single cells using nano-DESI MS. Analyst 2017; 142:3639-3647. [DOI: 10.1039/c7an00885f] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nano-DESI MS enables sensitive molecular profiling and quantification of endogenous species in single cells in a higher throughput manner.
Collapse
|
16
|
|
17
|
Esaki T, Masujima T. Fluorescence Probing Live Single-cell Mass Spectrometry for Direct Analysis of Organelle Metabolism. ANAL SCI 2016; 31:1211-3. [PMID: 26656807 DOI: 10.2116/analsci.31.1211] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mitochondria in a live HepG2 cell were visualized with a fluorescent probe to specify their location and state in a living cell. Then, mitochondria were selectively captured with a nanospray tip under fluorescence microscope, and thousands of small molecular peaks were revealed and unique steroids specific to mitochondria were also found. This fluorescence imaging combined with live single-cell mass spectrometry opens the door to the analysis of site- and state-specific molecular detection to elucidate precise molecular mechanisms at the single-cell and organelle level.
Collapse
|
18
|
Ray JV, Mirata F, Pérollier C, Arotcarena M, Bayoudh S, Resmini M. Smart coumarin-tagged imprinted polymers for the rapid detection of tamoxifen. Anal Bioanal Chem 2016; 408:1855-61. [PMID: 26862049 PMCID: PMC4759217 DOI: 10.1007/s00216-015-9296-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 12/15/2015] [Accepted: 12/23/2015] [Indexed: 11/26/2022]
Abstract
A signalling molecularly imprinted polymer was synthesised for easy detection of tamoxifen and its metabolites. 6-Vinylcoumarin-4-carboxylic acid (VCC) was synthesised from 4-bromophenol to give a fluorescent monomer, designed to switch off upon binding of tamoxifen. Clomiphene, a chlorinated analogue, was used as the template for the imprinting, and its ability to quench the coumarin fluorescence when used in a 1:1 ratio was demonstrated. Tamoxifen and 4-hydroxytamoxifen were also shown to quench coumarin fluorescence. Imprinted and non-imprinted polymers were synthesised using VCC, methacrylic acid as a backbone monomer and ethylene glycol dimethacrylate as cross-linker, and were ground and sieved to particle sizes ranging between 45 and 25 μm. Rebinding experiments demonstrate that the imprinted polymer shows very strong affinity for both clomiphene and tamoxifen, while the non-imprinted polymer shows negligible rebinding. The fluorescence of the imprinted polymer is quenched by clomiphene, tamoxifen and 4-hydroxytamoxifen. The switch off in fluorescence of the imprinted polymer under these conditions could also be detected under a UV lamp with the naked eye, making this matrix suitable for applications when coupled with a sample preparation system.
Collapse
Affiliation(s)
- Judith V Ray
- Department of Chemistry, SBCS, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Fosca Mirata
- Department of Chemistry, SBCS, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Celine Pérollier
- POLYINTELL, Pharma Parc II, Voie de l'Innovation, Chaussée du Vexin, 27100, Val-de-Reuil, France
| | - Michel Arotcarena
- POLYINTELL, Pharma Parc II, Voie de l'Innovation, Chaussée du Vexin, 27100, Val-de-Reuil, France
| | - Sami Bayoudh
- POLYINTELL, Pharma Parc II, Voie de l'Innovation, Chaussée du Vexin, 27100, Val-de-Reuil, France
| | - Marina Resmini
- Department of Chemistry, SBCS, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
19
|
Affiliation(s)
- Julia Laskin
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN K8-88, Richland, WA 99352
| | - Ingela Lanekoff
- Department of Chemistry-BMC, Uppsala University, Box 599, 751 24 Uppsala, Sweden
| |
Collapse
|
20
|
Wei Z, Xiong X, Guo C, Si X, Zhao Y, He M, Yang C, Xu W, Tang F, Fang X, Zhang S, Zhang X. Pulsed Direct Current Electrospray: Enabling Systematic Analysis of Small Volume Sample by Boosting Sample Economy. Anal Chem 2015; 87:11242-8. [DOI: 10.1021/acs.analchem.5b02115] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Zhenwei Wei
- Beijing Key Laboratory for
Microanalytical Methods, Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xingchuang Xiong
- Beijing Key Laboratory for
Microanalytical Methods, Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Chengan Guo
- Beijing Key Laboratory for
Microanalytical Methods, Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xingyu Si
- Beijing Key Laboratory for
Microanalytical Methods, Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yaoyao Zhao
- Beijing Key Laboratory for
Microanalytical Methods, Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Muyi He
- Beijing Key Laboratory for
Microanalytical Methods, Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Chengdui Yang
- Beijing Key Laboratory for
Microanalytical Methods, Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Wei Xu
- Beijing Key Laboratory for
Microanalytical Methods, Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Fei Tang
- Beijing Key Laboratory for
Microanalytical Methods, Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xiang Fang
- Beijing Key Laboratory for
Microanalytical Methods, Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Sichun Zhang
- Beijing Key Laboratory for
Microanalytical Methods, Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xinrong Zhang
- Beijing Key Laboratory for
Microanalytical Methods, Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
21
|
Single-cell mass spectrometry reveals small molecules that affect cell fates in the 16-cell embryo. Proc Natl Acad Sci U S A 2015; 112:6545-50. [PMID: 25941375 DOI: 10.1073/pnas.1423682112] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Spatial and temporal changes in molecular expression are essential to embryonic development, and their characterization is critical to understand mechanisms by which cells acquire different phenotypes. Although technological advances have made it possible to quantify expression of large molecules during embryogenesis, little information is available on metabolites, the ultimate indicator of physiological activity of the cell. Here, we demonstrate that single-cell capillary electrophoresis-electrospray ionization mass spectrometry is able to test whether differential expression of the genome translates to the domain of metabolites between single embryonic cells. Dissection of three different cell types with distinct tissue fates from 16-cell embryos of the South African clawed frog (Xenopus laevis) and microextraction of their metabolomes enabled the identification of 40 metabolites that anchored interconnected central metabolic networks. Relative quantitation revealed that several metabolites were differentially active between the cell types in the wild-type, unperturbed embryos. Altering postfertilization cytoplasmic movements that perturb dorsal development confirmed that these three cells have characteristic small-molecular activity already at cleavage stages as a result of cell type and not differences in pigmentation, yolk content, cell size, or position in the embryo. Changing the metabolite concentration caused changes in cell movements at gastrulation that also altered the tissue fates of these cells, demonstrating that the metabolome affects cell phenotypes in the embryo.
Collapse
|
22
|
Zhang M, Lin F, Xu J, Xu W. Membrane electrospray ionization for direct ultrasensitive biomarker quantitation in biofluids using mass spectrometry. Anal Chem 2015; 87:3123-8. [PMID: 25728048 DOI: 10.1021/acs.analchem.5b00467] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability of rapid biomarker quantitation in raw biological samples would expand the application of mass spectrometry in clinical diagnosis. Up until now, the conventional chromatography-mass spectrometry method is time-consuming in both sample preparation and chromatography separation processes, while ambient ionization methods normally suffer from sensitivity. The membrane electrospray ionization (MESI) introduced in this study could not only achieve sensitive biomolecule quantitation, but also minimize the sample handling process. As a unique feature of MESI, both vertical and horizontal chemical separations could be achieved in real-time. With the capability of mass-selectively minimizing matrix effects from salts, small molecules, and macromolecules, ultrasensitive detection of cytochrome C (>500-fold sensitivity improvement) in raw urine samples was demonstrated in less than 20 min.
Collapse
Affiliation(s)
- Mei Zhang
- †National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China, 102206.,‡State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China, 102206.,§Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China, 310003
| | - Fankai Lin
- ⊥School of Life Science, Beijing Institute of Technology, Beijing, China, 100081
| | - Jianguo Xu
- †National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China, 102206.,‡State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China, 102206.,§Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China, 310003
| | - Wei Xu
- ⊥School of Life Science, Beijing Institute of Technology, Beijing, China, 100081
| |
Collapse
|
23
|
Ong TH, Tillmaand EG, Makurath M, Rubakhin SS, Sweedler JV. Mass spectrometry-based characterization of endogenous peptides and metabolites in small volume samples. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:732-40. [PMID: 25617659 DOI: 10.1016/j.bbapap.2015.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/22/2014] [Accepted: 01/16/2015] [Indexed: 12/22/2022]
Abstract
Technologies to assay single cells and their extracellular microenvironments are valuable in elucidating biological function, but there are challenges. Sample volumes are low, the physicochemical parameters of the analytes vary widely, and the cellular environment is chemically complex. In addition, the inherent difficulty of isolating individual cells and handling small volume samples complicates many experimental protocols. Here we highlight a number of mass spectrometry (MS)-based measurement approaches for characterizing the chemical content of small volume analytes, with a focus on methods used to detect intracellular and extracellular metabolites and peptides from samples as small as individual cells. MS has become one of the most effective means for analyzing small biological samples due to its high sensitivity, low analyte consumption, compatibility with a wide array of sampling approaches, and ability to detect a large number of analytes with different properties without preselection. Having access to a flexible portfolio of MS-based methods allows quantitative, qualitative, untargeted, targeted, multiplexed, and spatially resolved investigations of single cells and their similarly scaled extracellular environments. Combining MS with on-line and off-line sample conditioning tools, such as microfluidic and capillary electrophoresis systems, significantly increases the analytical coverage of the sample's metabolome and peptidome, and improves individual analyte characterization/identification. Small volume assays help to reveal the causes and manifestations of biological and pathological variability, as well as the functional heterogeneity of individual cells within their microenvironments and within cellular populations. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.
Collapse
Affiliation(s)
- Ta-Hsuan Ong
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Emily G Tillmaand
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Monika Makurath
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Stanislav S Rubakhin
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Jonathan V Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
24
|
Colombo F, Trombetta E, Cetrangolo P, Maggioni M, Razini P, De Santis F, Torrente Y, Prati D, Torresani E, Porretti L. Giant Lysosomes as a Chemotherapy Resistance Mechanism in Hepatocellular Carcinoma Cells. PLoS One 2014; 9:e114787. [PMID: 25493932 PMCID: PMC4262459 DOI: 10.1371/journal.pone.0114787] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/13/2014] [Indexed: 02/07/2023] Open
Abstract
Despite continuous improvements in therapeutic protocols, cancer-related mortality is still one of the main problems facing public health. The main cause of treatment failure is multi-drug resistance (MDR: simultaneous insensitivity to different anti-cancer agents), the underlying molecular and biological mechanisms of which include the activity of ATP binding cassette (ABC) proteins and drug compartmentalisation in cell organelles. We investigated the expression of the main ABC proteins and the role of cytoplasmic vacuoles in the MDR of six hepatocellular carcinoma (HCC) cell lines, and confirmed the accumulation of the yellow anti-cancer drug sunitinib in giant (four lines) and small cytoplasmic vacuoles of lysosomal origin (two lines). ABC expression analyses showed that the main ABC protein harboured by all of the cell lines was PGP, whose expression was not limited to the cell membrane but was also found on lysosomes. MTT assays showed that the cell lines with giant lysosomes were more resistant to sorafenib treatment than those with small lysosomes (p<0.01), and that verapamil incubation can revert this resistance, especially if it is administered after drug pre-incubation. The findings of this study demonstrate the involvement of PGP-positive lysosomes in drug sequestration and MDR in HCC cell lines. The possibility of modulating this mechanism using PGP inhibitors could lead to the development of new targeted strategies to enhance HCC treatment.
Collapse
Affiliation(s)
- Federico Colombo
- Clinical Chemistry and Microbiology Laboratory, Flow Cytometry and Experimental Hepatology Service, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- * E-mail:
| | - Elena Trombetta
- Clinical Chemistry and Microbiology Laboratory, Flow Cytometry and Experimental Hepatology Service, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Cetrangolo
- Clinical Chemistry and Microbiology Laboratory, Flow Cytometry and Experimental Hepatology Service, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Maggioni
- Clinical Pathology Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Razini
- Stem Cell Laboratory, University of Milan, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca De Santis
- Stem Cell Laboratory, University of Milan, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Yvan Torrente
- Stem Cell Laboratory, University of Milan, Department of Pathophysiology and Transplantation, Centro Dino Ferrari, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Prati
- Department of Transfusion Medicine and Hematology, Ospedale A. Manzoni, Lecco, Italy
| | - Erminio Torresani
- Clinical Chemistry and Microbiology Laboratory, Flow Cytometry and Experimental Hepatology Service, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Porretti
- Clinical Chemistry and Microbiology Laboratory, Flow Cytometry and Experimental Hepatology Service, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
25
|
Miyashita SI, Groombridge AS, Fujii SI, Takatsu A, Chiba K, Inagaki K. Time-resolved ICP-MS measurement: a new method for elemental and multiparametric analysis of single cells. ANAL SCI 2014; 30:219-24. [PMID: 24521907 DOI: 10.2116/analsci.30.219] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Time-resolved inductively coupled plasma mass spectrometry (ICP-MS) has attracted much attention for elemental and multiparametric analysis of single cells, instead of a classical bulk analysis of large amount of cells after a dissolution. In the time-resolved measurement, cells are directly introduced into the plasma via nebulizing or micro drop dispensing, and then ion plumes corresponding to single cells are individually detected with a high time resolution. The sensitivity and cell throughput in the measurement strongly depend on the time resolution. A high cell introduction efficiency into the plasma supports for a reduction of cell consumption. Biomolecules can also be measured through the attachment of elemental tags, and then the amount distribution of elements and biomolecules in single cells can be evaluated, while providing information concerning cell-to-cell variations. By applying ICP time-of-flight mass spectrometry (ICP-TOFMS), multiparametric analysis of elements and biomolecules can be achieved similar to that by a flow cytometer. This article highlights the technical aspects of the time-resolved ICP-MS measurement technique for elemental and multiparametric analysis of single cells.
Collapse
Affiliation(s)
- Shin-ichi Miyashita
- Environmental Standards Section, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology
| | | | | | | | | | | |
Collapse
|
26
|
Zhang L, Foreman DP, Grant PA, Shrestha B, Moody SA, Villiers F, Kwak JM, Vertes A. In situ metabolic analysis of single plant cells by capillary microsampling and electrospray ionization mass spectrometry with ion mobility separation. Analyst 2014; 139:5079-85. [PMID: 25109271 DOI: 10.1039/c4an01018c] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Advances in single cell analysis techniques have demonstrated cell-to-cell variability in both homogeneous and heterogeneous cell populations strengthening our understanding of multicellular organisms and individual cell behaviour. However, additional tools are needed for non-targeted metabolic analysis of live single cells in their native environment. Here, we combine capillary microsampling with electrospray ionization (ESI) mass spectrometry (MS) and ion mobility separation (IMS) for the analysis of various single A. thaliana epidermal cell types, including pavement and basal cells, and trichomes. To achieve microsampling of different cell types with distinct morphology, custom-tailored microcapillaries were used to extract the cell contents. To eliminate the isobaric interferences and enhance the ion coverage in single cell analysis, a rapid separation technique, IMS, was introduced that retained ions based on their collision cross sections. For each cell type, the extracted cell material was directly electrosprayed resulting in ∼200 peaks in ESI-MS and ∼400 different ions in ESI-IMS-MS, the latter representing a significantly enhanced coverage. Based on their accurate masses and tandem MS, 23 metabolites and lipids were tentatively identified. Our results indicated that profound metabolic differences existed between the trichome and the other two cell types but differences between pavement and basal cells were hard to discern. The spectra indicated that in all three A. thaliana cell types the phenylpropanoid metabolism pathway had high coverage. In addition, metabolites from the subpathway, sinapic acid ester biosynthesis, were more abundant in single pavement and basal cells, whereas compounds from the kaempferol glycoside biosynthesis pathway were present at significantly higher level in trichomes. Our results demonstrate that capillary microsampling coupled with ESI-IMS-MS captures metabolic differences between A. thaliana epidermal cell types, paving the way for the non-targeted analysis of single plant cells and subcellular compartments.
Collapse
Affiliation(s)
- Linwen Zhang
- Department of Chemistry, W. M. Keck Institute for Proteomics Technology and Applications, The George Washington University, Washington, DC 20052, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
The effect and mechanism of tamoxifen-induced hepatocyte steatosis in vitro. Int J Mol Sci 2014; 15:4019-30. [PMID: 24603540 PMCID: PMC3975381 DOI: 10.3390/ijms15034019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/11/2014] [Accepted: 02/19/2014] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to determine the effect and mechanism of tamoxifen (TAM)-induced steatosis in vitro. HepG 2 (Human hepatocellular liver carcinoma cell line) cells were treated with different concentrations of TAM for 72 h. Steatosis of hepatocytes was determined after Oil Red O staining and measurement of triglyceride (TG) concentration. The expressions of genes in the TG homeostasis pathway, including sterol regulatory element-binding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), stearoyl-CoA desaturase (SCD), carnitine palmitoyltransferase 1 (CPT1) and microsomal triglyceride transfer protein (MTP), were examined using quantitative real-time PCR and Western blot analysis. Cell proliferation was examined using the cell counting kit-8 (CCK-8) assay. We found that hepatocytes treated with TAM had: (1) induced hepatocyte steatosis and increased hepatocyte TG; (2) upregulation of SREBP-1c, FAS, ACC, SCD and MTP mRNA expressions (300%, 600%, 70%, 130% and 160%, respectively); (3) corresponding upregulation of protein expression; and (4) no difference in HepG 2 cell proliferation. Our results suggest that TAM can induce hepatocyte steatosis in vitro and that the enhancement of fatty acid synthesis through the upregulations of SREBP-1c and its downstream target genes (FAS, ACC and SCD) may be the key mechanism of TAM-induced hepatocyte steatosis.
Collapse
|
28
|
Chingin K, Liang J, Chen H. Direct analysis of in vitro grown microorganisms and mammalian cells by ambient mass spectrometry. RSC Adv 2014. [DOI: 10.1039/c3ra46327c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
29
|
Wei Z, Han S, Gong X, Zhao Y, Yang C, Zhang S, Zhang X. Rapid Removal of Matrices from Small-Volume Samples by Step-Voltage Nanoelectrospray. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Wei Z, Han S, Gong X, Zhao Y, Yang C, Zhang S, Zhang X. Rapid Removal of Matrices from Small-Volume Samples by Step-Voltage Nanoelectrospray. Angew Chem Int Ed Engl 2013; 52:11025-8. [DOI: 10.1002/anie.201302870] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 06/23/2013] [Indexed: 12/23/2022]
|
31
|
Trouillon R, Passarelli MK, Wang J, Kurczy ME, Ewing AG. Chemical Analysis of Single Cells. Anal Chem 2012; 85:522-42. [DOI: 10.1021/ac303290s] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Raphaël Trouillon
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
| | - Melissa K. Passarelli
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
| | - Jun Wang
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
| | - Michael E. Kurczy
- Chalmers University, Department of Chemistry
and Biological Engineering, 41296 Gothenburg, Sweden
| | - Andrew G. Ewing
- University of Gothenburg, Department of Chemistry and Molecular
Biology, 41296 Gothenburg, Sweden
- Chalmers University, Department of Chemistry
and Biological Engineering, 41296 Gothenburg, Sweden
| |
Collapse
|
32
|
Stolee JA, Shrestha B, Mengistu G, Vertes A. Observation of Subcellular Metabolite Gradients in Single Cells by Laser Ablation Electrospray Ionization Mass Spectrometry. Angew Chem Int Ed Engl 2012; 51:10386-9. [DOI: 10.1002/anie.201205436] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Indexed: 11/10/2022]
|
33
|
Stolee JA, Shrestha B, Mengistu G, Vertes A. Observation of Subcellular Metabolite Gradients in Single Cells by Laser Ablation Electrospray Ionization Mass Spectrometry. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205436] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|