1
|
Yang F, Xiao W, Liu Y, Liu R, Kramer R, Li X, Ajena Y, Baehr CM, Rojalin T, Zhang H, Lam KS. One-bead one-compound combinatorial library derived targeting ligands for detection and treatment of oral squamous cancer. Oncotarget 2019; 10:5468-5479. [PMID: 31534631 PMCID: PMC6739215 DOI: 10.18632/oncotarget.27189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
Oral squamous cancers (OSC) are hallmarked by poor prognosis, delayed clinical detection, and a lack of defined, characteristic biomarkers. By screening combinatorial one-bead one-compound (OBOC) peptide libraries against oral squamous cancer cell lines, two cyclic peptide ligands, LLY12 and LLY13 were previously identified. These ligands are capable of specific binding to the oral cancer cell lines (MOK-101, HSC-3, SCC-4 and SCC-10a) but not non-cancerous keratinocytes, leukocytes, fibroblast, and endothelial cells. These two peptides were synthesized and evaluated for their binding property, cytotoxicity and cell permeability. In vitro studies indicate that both LLY12 and LLY13 were able to bind to oral cancer cells with high specificity but did not show any cytotoxicity against human keratinocytes. Biotinylated LLY13, in complex with streptavidin-alexa488 was taken up by live oral cancer cells, thus rendering it as an excellent candidate vehicle for efficient delivery of drug loaded-nanoparticles. In vivo and ex vivo near infra-red fluorescence imaging studies confirmed the in vivo targeting efficiency and specificity of LLY13 in oral cancer orthotopic murine xenograft model. In vivo studies also showed that LLY13 was able to accumulate in the OSC tumors and demarcate the tumor margins in orthotopic xenograft model. Together, our data supports LLY13 as a promising theranostic agent against OSC.
Collapse
Affiliation(s)
- Fan Yang
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Wenwu Xiao
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
| | - Yanlei Liu
- Department of Pathology, University of California Davis Medical Center, Sacramento, CA, USA
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
| | - Randall Kramer
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Xiaocen Li
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
| | - Yousif Ajena
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
| | - Christopher M Baehr
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
| | - Tatu Rojalin
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
| | - Hongyong Zhang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, USA
| |
Collapse
|
2
|
NISHI S, YAMAMOTO C, YONEDA S, SUEDA S. Labeling of Cytoskeletal Proteins in Living Cells Using Biotin Ligase Carrying a Fluorescent Protein. ANAL SCI 2017; 33:897-902. [DOI: 10.2116/analsci.33.897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Sairi NISHI
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology
| | - Chihiro YAMAMOTO
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology
| | - Sawako YONEDA
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology
| | - Shinji SUEDA
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology
- Research Center for Bio-microsensing Technology, Kyushu Institute of Technology
| |
Collapse
|
3
|
Fluorescence bioimaging of intracellular signaling and its clinical application. J Oral Biosci 2016; 58:113-119. [PMID: 32512679 DOI: 10.1016/j.job.2016.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/18/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Fluorescent proteins have continued to shed light on cell biology since the cDNA of wild type green fluorescent protein was first isolated. Nowadays, these remarkable proteins are useful tools, not only in basic research, but also in clinical medicine. HIGHLIGHT By taking advantage of fluorescent protein-based technologies, we identified a signaling network critical for influenza virus internalization and infection. In addition, we developed a highly sensitive biosensor for monitoring kinase activity that utilizes energy transfer between fluorescent proteins. This has led to a high-performance clinical test that enables the prediction of future therapeutic responses and the risk of acquired drug resistance for each individual patient before beginning molecular target therapy. CONCLUSION Technologies that utilize fluorescent proteins, such as the biosensor presented here, should find increasing applications in clinical medicine.
Collapse
|