1
|
Griese M, Kurland G, Cidon M, Deterding RR, Epaud R, Nathan N, Schwerk N, Warburton D, Weinman JP, Young LR, Deutsch GH. Pulmonary fibrosis may begin in infancy: from childhood to adult interstitial lung disease. Thorax 2024; 79:1162-1172. [PMID: 39153860 PMCID: PMC11671978 DOI: 10.1136/thorax-2024-221772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/25/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Childhood interstitial lung disease (chILD) encompasses a group of rare heterogeneous respiratory conditions associated with significant morbidity and mortality. Reports suggest that many patients diagnosed with chILD continue to have potentially progressive or fibrosing disease into adulthood. Over the last decade, the spectrum of conditions within chILD has widened substantially, with the discovery of novel entities through advanced genetic testing. However, most evidence is often limited to small case series, with reports disseminated across an array of subspecialty, clinical and molecular journals. In particular, the frequency, management and outcome of paediatric pulmonary fibrosis is not well characterised, unlike in adults, where clear diagnosis and treatment guidelines are available. METHODS AND RESULTS This review assesses the current understanding of pulmonary fibrosis in chILD. Based on registry data, we have provisionally estimated the occurrence of fibrosis in various manifestations of chILD, with 47 different potentially fibrotic chILD entities identified. Published evidence for fibrosis in the spectrum of chILD entities is assessed, and current and future issues in management of pulmonary fibrosis in childhood, continuing into adulthood, are considered. CONCLUSIONS There is a need for improved knowledge of chILD among pulmonologists to optimise the transition of care from paediatric to adult facilities. Updated evidence-based guidelines are needed that incorporate recommendations for the diagnosis and management of immune-mediated disorders, as well as chILD in older children approaching adulthood.
Collapse
Affiliation(s)
- Matthias Griese
- German Center for Lung Research (DZL), University of Munich, LMU Hospital Department of Pediatrics at Dr von Hauner Children's Hospital, Munchen, Germany
| | - Geoffrey Kurland
- Division of Pediatric Pulmonology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Michal Cidon
- Children’s Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Robin R Deterding
- Section of Pediatric Pulmonary and Sleep Medicine Department of Pediatrics, University of Colorado Denver, Denver, Colorado, USA
- Children's Hospital Colorado, Aurora, Colorado, USA
| | - Ralph Epaud
- Pediatric Pulmonology Department, Centre Hospitalier Intercommunal de Créteil; Centre des Maladies Respiratoires Rares (RESPIRARE®); University Paris Est Créteil, INSERM, IMRB, Créteil, France
| | - Nadia Nathan
- Paediatric Pulmonology Department and Reference Centre for Rare Lung Diseases RespiRare, Laboratory of Childhood Genetic Diseases, Inserm UMS_S933, Sorbonne Université and AP-HP, Hôpital Trousseau, Paris, France
| | - Nicolaus Schwerk
- Clinic for Paediatric Pneumology, Allergy and Neonatology, Hannover Medical School, German Center for Lung Research (DZL), Hannover, Germany
| | - David Warburton
- Children’s Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Jason P Weinman
- Department of Radiology, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Lisa R Young
- Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Gail H Deutsch
- Department of Pathology, Seattle Children's Hospital and University of Washington Medical Center, Seattle, Washington, USA
| |
Collapse
|
2
|
Ognean ML, Anciuc-Crauciuc M, Galiș R, Stepan AE, Stepan MD, Bănescu C, Grosu F, Kramer BW, Cucerea M. ABCA3 c.838C>T (p.Arg280Cys, R280C) and c.697C>T (p.Gln233Ter, Q233X, Q233*) as Causative Variants for RDS: A Family Case Study and Literature Review. Biomedicines 2024; 12:2390. [PMID: 39457702 PMCID: PMC11505159 DOI: 10.3390/biomedicines12102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Respiratory distress syndrome (RDS) is the primary cause of respiratory failure in preterm infants, but it also affects 5-7% of term infants. Dysfunctions in pulmonary surfactant metabolism, resulting from mutations of the lung surfactant genes, are rare diseases, ranging from fatal neonatal RDS to interstitial lung disease, associated with increased morbidity and mortality. This study aims to clarify the clinical significance of ABCA3 variants found in a specific family case, as existing data in the literature are inconsistent. Material and Methods: A family case report was conducted; targeted panel genetic testing identified a variant of the SFTPB gene and two variants of ABCA3 genes. Comprehensive research involving a systematic review of PubMed, Google Scholar databases, and genome browsers was used to clarify the pathogenicity of the two ABCA3 variants found in the index patient. Advanced prediction tools were employed to assess the pathogenicity of the two ABCA3 variants, ensuring the validity and reliability of our findings. Results: The index case exhibited fatal neonatal RDS. Genetic testing revealed the presence of the SFTPB p.Val267Ile variant, which was not previously reported but is a benign variant based on family genetic testing and history. Additionally, two ABCA3 gene variants were identified: c.697C>T, not yet reported, and c.838C>T. These variants were found to affect ABCA3 protein function and were likely associated with neonatal RDS. Prediction tools and data from nine other cases in the literature supported this conclusion. Conclusions: Based on in silico predictors, an analysis of the presented family, and cases described in the literature, it is reasonable to consider reclassifying the two ABCA3 variants identified in the index case as pathogenic/pathogenic. Reclassification will improve genetic counseling accuracy and facilitate correct diagnosis.
Collapse
Affiliation(s)
- Maria Livia Ognean
- Faculty of Medicine, Lucian Blaga University, 550169 Sibiu, Romania; (M.L.O.)
- Neonatology Department, Clinical County Emergency Hospital, 550245 Sibiu, Romania
| | - Mădălina Anciuc-Crauciuc
- Department of Neonatology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Targu Mures, Romania;
| | - Radu Galiș
- Department of Neonatology, Emergency County Hospital Bihor, Oradea University, 410087 Oradea, Romania;
- Department of Neonatology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Alex-Emilian Stepan
- Department of Pathology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania
| | - Mioara Desdemona Stepan
- Department of Infant Care-Pediatrics-Neonatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Claudia Bănescu
- Genetic Department, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania
| | - Florin Grosu
- Faculty of Medicine, Lucian Blaga University, 550169 Sibiu, Romania; (M.L.O.)
- Imaging Department, Lucian Blaga University, 550169 Sibiu, Romania
| | - Boris W. Kramer
- Department of Neonatology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Manuela Cucerea
- Department of Neonatology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Targu Mures, Romania;
| |
Collapse
|
3
|
Casey A, Fiorino EK, Wambach J. Innovations in Childhood Interstitial and Diffuse Lung Disease. Clin Chest Med 2024; 45:695-715. [PMID: 39069332 PMCID: PMC11366208 DOI: 10.1016/j.ccm.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Children's interstitial and diffuse lung diseases (chILDs) are a heterogenous and diverse group of lung disorders presenting during childhood. Infants and children with chILD disorders present with respiratory signs and symptoms as well as diffuse lung imaging abnormalities. ChILD disorders are associated with significant health care resource utilization and high morbidity and mortality. The care of patients with chILD has been improved through multidisciplinary care, multicenter collaboration, and the establishment of patient research networks in the United Stated and abroad. This review details past and current innovations in the diagnosis and clinical care of children with chILD.
Collapse
Affiliation(s)
- Alicia Casey
- Department of Pediatrics, Division of Pulmonary Medicine, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Elizabeth K Fiorino
- Department of Science Education and Pediatrics, Donald and Barabara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Jennifer Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Anciuc-Crauciuc M, Cucerea MC, Tripon F, Crauciuc GA, Bănescu CV. Descriptive and Functional Genomics in Neonatal Respiratory Distress Syndrome: From Lung Development to Targeted Therapies. Int J Mol Sci 2024; 25:649. [PMID: 38203821 PMCID: PMC10780183 DOI: 10.3390/ijms25010649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
In this up-to-date study, we first aimed to highlight the genetic and non-genetic factors associated with respiratory distress syndrome (RDS) while also focusing on the genomic aspect of this condition. Secondly, we discuss the treatment options and the progressing therapies based on RNAs or gene therapy. To fulfill this, our study commences with lung organogenesis, a highly orchestrated procedure guided by an intricate network of conserved signaling pathways that ultimately oversee the processes of patterning, growth, and differentiation. Then, our review focuses on the molecular mechanisms contributing to both normal and abnormal lung growth and development and underscores the connections between genetic and non-genetic factors linked to neonatal RDS, with a particular emphasis on the genomic aspects of this condition and their implications for treatment choices and the advancing therapeutic approaches centered around RNAs or gene therapy.
Collapse
Affiliation(s)
- Mădălina Anciuc-Crauciuc
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania; (M.A.-C.); (C.V.B.)
- Neonatology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania;
| | - Manuela Camelia Cucerea
- Neonatology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania;
| | - Florin Tripon
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania; (M.A.-C.); (C.V.B.)
| | - George-Andrei Crauciuc
- Genetics Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540139 Târgu Mureș, Romania;
| | - Claudia Violeta Bănescu
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania; (M.A.-C.); (C.V.B.)
- Genetics Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540139 Târgu Mureș, Romania;
| |
Collapse
|
5
|
Peers de Nieuwburgh M, Wambach JA, Griese M, Danhaive O. Towards personalized therapies for genetic disorders of surfactant dysfunction. Semin Fetal Neonatal Med 2023; 28:101500. [PMID: 38036307 PMCID: PMC10753445 DOI: 10.1016/j.siny.2023.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Genetic disorders of surfactant dysfunction are a rare cause of chronic, progressive or refractory respiratory failure in term and preterm infants. This review explores genetic mechanisms underpinning surfactant dysfunction, highlighting specific surfactant-associated genes including SFTPB, SFTPC, ABCA3, and NKX2.1. Pathogenic variants in these genes contribute to a range of clinical presentations and courses, from neonatal hypoxemic respiratory failure to childhood interstitial lung disease and even adult-onset pulmonary fibrosis. This review emphasizes the importance of early recognition, thorough phenotype assessment, and assessment of variant functionality as essential prerequisites for treatments including lung transplantation. We explore emerging treatment options, including personalized pharmacological approaches and gene therapy strategies. In conclusion, this comprehensive review offers valuable insights into the pathogenic mechanisms of genetic disorders of surfactant dysfunction, genetic fundamentals, available and emerging therapeutic options, and underscores the need for further research to develop personalized therapies for affected infants and children.
Collapse
Affiliation(s)
- Maureen Peers de Nieuwburgh
- Division of Neonatology, Department of Pediatrics, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium.
| | - Jennifer A Wambach
- Washington University School of Medicine/St. Louis Children's Hospital, One Children's Place, St. Louis, Missouri, USA.
| | - Matthias Griese
- Pediatric Pulmonology, Dr von Hauner Children's Hospital, University-Hospital, German Center for Lung Research (DZL), Munich, Germany.
| | - Olivier Danhaive
- Division of Neonatology, Department of Pediatrics, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium; Division of Neonatology, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Yang X, Rapp CK, Li Y, Forstner M, Griese M. Quantifying Functional Impairment of ABCA3 Variants Associated with Interstitial Lung Disease. Int J Mol Sci 2023; 24:ijms24087554. [PMID: 37108718 PMCID: PMC10141231 DOI: 10.3390/ijms24087554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
ATP-binding cassette subfamily A member 3 (ABCA3) is a lipid transporter within alveolar type II cells. Patients with bi-allelic variants in ABCA3 may suffer from a variable severity of interstitial lung disease. We characterized and quantified ABCA3 variants' overall lipid transport function by assessing the in vitro impairment of its intracellular trafficking and pumping activity. We expressed the results relative to the wild type, integrated the quantitative readouts from eight different assays and used newly generated data combined with previous results to correlate the variants' function and clinical phenotype. We differentiated normal (within 1 normalized standard deviation (nSD) of the wild-type mean), impaired (within 1 to 3 nSD) and defective (beyond 3 nSD) variants. The transport of phosphatidylcholine from the recycling pathway into ABCA3+ vesicles proved sensitive to the variants' dysfunction. The sum of the quantitated trafficking and pumping predicted a clinical outcome. More than an approximately 50% loss of function was associated with considerable morbidity and mortality. The in vitro quantification of ABCA3 function enables detailed variant characterization, substantially improves the phenotype prediction of genetic variants and possibly supports future treatment decisions.
Collapse
Affiliation(s)
- Xiaohua Yang
- Dr. von Haunersches Kinderspital, German Center for Lung Research (DZL), University of Munich, Lindwurmstr. 4a, D-80337 Munich, Germany
| | - Christina K Rapp
- Dr. von Haunersches Kinderspital, German Center for Lung Research (DZL), University of Munich, Lindwurmstr. 4a, D-80337 Munich, Germany
| | - Yang Li
- Dr. von Haunersches Kinderspital, German Center for Lung Research (DZL), University of Munich, Lindwurmstr. 4a, D-80337 Munich, Germany
- Medical College, Chongqing University, Chongqing 400030, China
| | - Maria Forstner
- Dr. von Haunersches Kinderspital, German Center for Lung Research (DZL), University of Munich, Lindwurmstr. 4a, D-80337 Munich, Germany
| | - Matthias Griese
- Dr. von Haunersches Kinderspital, German Center for Lung Research (DZL), University of Munich, Lindwurmstr. 4a, D-80337 Munich, Germany
| |
Collapse
|
7
|
Balinotti JE, Mallie C, Maffey A, Colom A, Epaud R, de Becdelievre A, Fanen P, Delestrain C, Medín M, Teper A. Inherited pulmonary surfactant metabolism disorders in Argentina: Differences between patients with SFTPC and ABCA3 variants. Pediatr Pulmonol 2023; 58:540-549. [PMID: 36324278 DOI: 10.1002/ppul.26225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 09/30/2022] [Accepted: 11/02/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Patients with inherited pulmonary surfactant metabolism disorders have a wide range of clinical outcomes and imaging findings. Response to current anti-inflammatory therapies has been variable and efficacy is unclear. OBJECTIVE To describe and compare genetic, clinical, histological, and computed tomography (CT) outcomes in a cohort of patients with variants in the genes encoding surfactant protein C (SP-C) or adenosine triphosphate-binding cassette transporter A3 (ABCA3) in Argentina. METHODS Observational cohort retrospective study. Patients carrying variants in genes encoding SP-C and ABCA3 proteins were included. RESULTS Fourteen patients met the inclusion criteria: SFTPC n = 6, ABCA3 n = 8 (seven were heterozygous and one compound heterozygous). Neonatal respiratory distress was more frequent and severe in neonates with variants in the ABCA3 gene. The onset of the disease occurred in infancy before the age of 20 months in all cases. Patients with ABCA3 pathogenic variants had a severe clinical course, while long-term outcomes were more favorable in individuals with SFTPC variants. Initial CT findings were ground glass opacities and intraparenchymal cysts in both groups. Over time, signs of lung fibrosis were present in 57% of patients with ABCA3 variants and in 33% of the SFTPC group. The efficacy of anti-inflammatory interventions appears to be poor, especially for patients with ABCA3 pathogenic variants. CONCLUSIONS Clinical, histological, and radiological features are similar in patients with SFTPC and ABCA3 variants; however, the latter have more severe clinical course. Current anti-inflammatory regimens do not appear to stop the progression of the disease.
Collapse
Affiliation(s)
- Juan E Balinotti
- Respiratory Center, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Camila Mallie
- Respiratory Center, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
| | - Alberto Maffey
- Respiratory Center, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
| | - Alejandro Colom
- Respiratory Center, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
| | - Ralph Epaud
- Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Centre de Références des maladies respiratoires rares, Creteil, Île-de-France, France
| | - Alix de Becdelievre
- Hôpital Henri Mondor, Département de Génétique, Creteil, Île-de-France, France
| | - Pascale Fanen
- Hôpital Henri Mondor, Département de Génétique, Creteil, Île-de-France, France
| | - Céline Delestrain
- Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Centre de Références des maladies respiratoires rares, Creteil, Île-de-France, France
| | - Martín Medín
- Pathology Service, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
| | - Alejandro Teper
- Respiratory Center, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
| |
Collapse
|
8
|
Xu KK, Wegner DJ, Geurts LC, Heins HB, Yang P, Hamvas A, Eghtesady P, Sweet SC, Sessions Cole F, Wambach JA. Biologic characterization of ABCA3 variants in lung tissue from infants and children with ABCA3 deficiency. Pediatr Pulmonol 2022; 57:1325-1330. [PMID: 35170262 PMCID: PMC9148430 DOI: 10.1002/ppul.25862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/31/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022]
Abstract
ABCA3 is a phospholipid transporter protein required for surfactant assembly in lamellar bodies of alveolar type II cells. Biallelic pathogenic ABCA3 variants cause severe neonatal respiratory distress syndrome or childhood interstitial lung disease. However, ABCA3 genotype alone does not explain the diversity in disease presentation, severity, and progression. Additionally, monoallelic ABCA3 variants have been reported in infants and children with ABCA3-deficient phenotypes. The effects of most ABCA3 variants identified in patients have not been characterized at the RNA level. ABCA3 allele-specific expression occurs in some cell types due to epigenetic regulation. We obtained lung tissue at transplant or autopsy from 16 infants and children with ABCA3 deficiency due to compound heterozygous ABCA3 variants for biologic characterization of the predicted effects of ABCA3 variants at the RNA level and determination of ABCA3 allele expression. We extracted DNA and RNA from frozen lung tissue and reverse-transcribed cDNA from mRNA. We performed Sanger sequencing to assess allele-specific expression by comparing the heights of variant nucleotide peaks in amplicons from genomic DNA and cDNA. We found similar genomic and cDNA variant nucleotide peak heights and no evidence of allele-specific expression among explant or autopsy samples with biallelic missense ABCA3 variants (n = 6). We observed allele-specific expression of missense alleles in trans with frameshift (n = 4) or nonsense (n = 1) variants, attributable to nonsense-mediated decay. The missense variant c.53 A > G;p.Gln18Arg, located near an exon-intron junction, encoded abnormal splicing with skipping of exon 4. Biologic characterization of ABCA3 variants can inform discovery of variant-specific disease mechanisms.
Collapse
Affiliation(s)
- Kathryn K Xu
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Daniel J Wegner
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Lucille C Geurts
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Hillary B Heins
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Ping Yang
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Aaron Hamvas
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Pirooz Eghtesady
- Department of Surgery, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Stuart C Sweet
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - F Sessions Cole
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Jennifer A Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Shaw NC, Kicic A, Fletcher S, Wilton SD, Stick SM, Schultz A. Primary Nasal Epithelial Cells as a Surrogate Cell Culture Model for Type-II Alveolar Cells to Study ABCA-3 Deficiency. Front Med (Lausanne) 2022; 9:827416. [PMID: 35265641 PMCID: PMC8899037 DOI: 10.3389/fmed.2022.827416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
ATP Binding Cassette Subfamily A Member 3 (ABCA-3) is a lipid transporter protein highly expressed in type-II alveolar (AT-II) cells. Mutations in ABCA3 can result in severe respiratory disease in infants and children. To study ABCA-3 deficiency in vitro, primary AT-II cells would be the cell culture of choice although sample accessibility is limited. Our aim was to investigate the suitability of primary nasal epithelial cells, as a surrogate culture model for AT-II cells, to study ABCA-3 deficiency. Expression of ABCA3, and surfactant protein genes, SFTPB and SFTPC, was detected in primary nasal epithelial cells but at a significantly lower level than in AT-II cells. ABCA-3, SP-B, and SP-C were detected by immunofluorescence microscopy in primary nasal epithelial cells. However, SP-B and SP-C were undetectable in primary nasal epithelial cells using western blotting. Structurally imperfect lamellar bodies were observed in primary nasal epithelial cells using transmission electron microscopy. Functional assessment of the ABCA-3 protein demonstrated that higher concentrations of doxorubicin reduced cell viability in ABCA-3 deficient nasal epithelial cells compared to controls in an assay-dependent manner. Our results indicate that there may be a role for primary nasal epithelial cell cultures to model ABCA-3 deficiency in vitro, although additional cell culture models that more effectively recapitulate the AT-II phenotype may be required.
Collapse
Affiliation(s)
- Nicole C Shaw
- Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia.,Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Anthony Kicic
- Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia.,Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Perth, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Perth, WA, Australia.,Occupation and Environment, School of Public Health, Curtin University, Perth, WA, Australia
| | - Sue Fletcher
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Sciences, The University of Western Australia, Perth, WA, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
| | - Stephen D Wilton
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Sciences, The University of Western Australia, Perth, WA, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
| | - Stephen M Stick
- Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia.,Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Perth, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Perth, WA, Australia
| | - André Schultz
- Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia.,Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Perth, WA, Australia
| |
Collapse
|
10
|
Bradford L, Ross MK, Minso J, Cernelc-Kohan M, Shayan K, Wong SS, Li X, Rivier L, Jegga AG, Deutsch GH, Vece TJ, Loughlin CE, Gower WA, Hurley C, Furman W, Stokes D, Hagood JS. Interstitial lung disease in children with Rubinstein-Taybi syndrome. Pediatr Pulmonol 2022; 57:264-272. [PMID: 34585851 DOI: 10.1002/ppul.25709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/30/2021] [Accepted: 09/21/2021] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Rubinstein-Taybi syndrome (RSTS) is a rare genetic syndrome caused primarily by a mutation in the CREBBP gene found on chromosome 16. Patients with RSTS are at greater risk for a variety of medical problems, including upper airway obstruction and aspiration. Childhood interstitial lung disease (ILD) thus far has not been definitively linked to RSTS. Here we present three patients with RSTS who developed ILD and discuss possible mechanisms by which a mutation in CREBBP may be involved in the development of ILD. METHODS Routine hematoxylin and eosin staining was performed on lung biopsy tissue for histological analysis. Immunofluorescent staining was performed on lung biopsy tissue for markers of fibrosis, surfactant deficiency and histone acetylation. Cases 1 and 2 had standard clinical microarray analysis. Case 3 had whole exome sequencing. Bioinformatics analyses were performed to identify possible causative genes using ToppGene. RESULTS Computed tomography images in all cases showed consolidated densities overlying ground glass opacities. Lung histopathology revealed accumulation of proteinaceous material within alveolar spaces, evidence of fibrosis, and increased alveolar macrophages. Immunofluorescent staining showed increase in surfactant protein C staining, patchy areas of increased anti-smooth muscle antibody staining, and increased staining for acetylated histone 2 and histone 3 lysine 9. DISCUSSION Clinical characteristics, radiographic imaging, lung histopathology, and immunofluorescent staining results shared by all cases demonstrated findings consistent with ILD. Immunofluorescent staining suggests two possible mechanisms for the development of ILD: abnormal surfactant metabolism and/or persistent activation of myofibroblasts. These two pathways could be related to dysfunctional CREBBP protein.
Collapse
Affiliation(s)
- Lauren Bradford
- Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mindy K Ross
- Division of Pediatric Pulmonology, University of California-Los Angeles, Los Angeles, California, USA
| | - Jagila Minso
- Division of Pediatric Critical Care, Sanford Health, Fargo, North Dakota, USA
| | - Mateja Cernelc-Kohan
- Department of Pediatrics, UC-San Diego Pediatric Respiratory Medicine, La Jolla, California, USA.,Division of Pediatric Respiratory Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Katayoon Shayan
- Division of Pediatric Respiratory Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Simon S Wong
- Department of Pediatrics, UC-San Diego Pediatric Respiratory Medicine, La Jolla, California, USA
| | - Xiaoping Li
- Department of Pediatrics, UC-San Diego Pediatric Respiratory Medicine, La Jolla, California, USA
| | - Lauraine Rivier
- Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anil G Jegga
- Department of Pediatrics, Division of Biomedical Informatics, Cincinnati Children's Hospital and Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, Division of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Gail H Deutsch
- Department of Pathology and Laboratory Medicine, Seattle Children's Hospital, Seattle, Washington, USA
| | - Timothy J Vece
- Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ceila E Loughlin
- Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - William A Gower
- Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Caitlin Hurley
- Critical Care Medicine Division, Departments of Pediatric Medicine and Bone Marrow Transplant, St. Jude Children's Hospital, Memphis, Tennessee, USA.,Department of Oncology, Division of Solid Tumor, St. Jude Children's Hospital, Memphis, Tennessee, USA
| | - Wayne Furman
- Critical Care Medicine Division, Departments of Pediatric Medicine and Bone Marrow Transplant, St. Jude Children's Hospital, Memphis, Tennessee, USA.,Department of Oncology, Division of Solid Tumor, St. Jude Children's Hospital, Memphis, Tennessee, USA
| | - Dennis Stokes
- Department of Pediatrics, Division of Pediatric Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James S Hagood
- Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
11
|
Onnée M, Fanen P, Callebaut I, de Becdelièvre A. Structure-Based Understanding of ABCA3 Variants. Int J Mol Sci 2021; 22:ijms221910282. [PMID: 34638622 PMCID: PMC8508924 DOI: 10.3390/ijms221910282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022] Open
Abstract
ABCA3 is a crucial protein of pulmonary surfactant biosynthesis, associated with recessive pulmonary disorders such as neonatal respiratory distress and interstitial lung disease. Mutations are mostly private, and accurate interpretation of variants is mandatory for genetic counseling and patient care. We used 3D structure information to complete the set of available bioinformatics tools dedicated to medical decision. Using the experimental structure of human ABCA4, we modeled at atomic resolution the human ABCA3 3D structure including transmembrane domains (TMDs), nucleotide-binding domains (NBDs), and regulatory domains (RDs) in an ATP-bound conformation. We focused and mapped known pathogenic missense variants on this model. We pinpointed amino-acids within the NBDs, the RDs and within the interfaces between the NBDs and TMDs intracellular helices (IHs), which are predicted to play key roles in the structure and/or the function of the ABCA3 transporter. This theoretical study also highlighted the possible impact of ABCA3 variants in the cytosolic part of the protein, such as the well-known p.Glu292Val and p.Arg288Lys variants.
Collapse
Affiliation(s)
- Marion Onnée
- Institut Mondor de Recherche Biomédicale, Université Paris Est Creteil, F-94010 Créteil, France; (M.O.); (P.F.)
| | - Pascale Fanen
- Institut Mondor de Recherche Biomédicale, Université Paris Est Creteil, F-94010 Créteil, France; (M.O.); (P.F.)
- AP-HP, Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Isabelle Callebaut
- Institut de Minéralogie de Physique des Matériaux et de Cosmochimie (IMPMC), Muséum National d’Histoire Naturelle, UMR CNRS 7590, Sorbonne Université, F-75005 Paris, France
- Correspondence: (I.C.); (A.d.B.)
| | - Alix de Becdelièvre
- Institut Mondor de Recherche Biomédicale, Université Paris Est Creteil, F-94010 Créteil, France; (M.O.); (P.F.)
- AP-HP, Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, Hôpital Henri Mondor, F-94010 Créteil, France
- Correspondence: (I.C.); (A.d.B.)
| |
Collapse
|
12
|
Wang J, Fan J, Zhang Y, Huang L, Shi Y. ABCA3 gene mutations shape the clinical profiles of severe unexplained respiratory distress syndrome in late preterm and term infants. Transl Pediatr 2021; 10:350-358. [PMID: 33708521 PMCID: PMC7944190 DOI: 10.21037/tp-20-283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The majority of unexplained respiratory distress syndrome (URDS) cases in late preterm and term infants are caused by genetic abnormalities, with the most common of these being ABCA3 gene mutation. At present, it is unclear to neonatologists whether URDS patients with ABCA3 mutation have similar or more challenging clinical profiles to those without any defined genetic abnormalities. Our study aimed to answer this question by comparing the clinical characteristics of severe URDS patients with homozygous or compound heterozygous ABCA3 mutations, a single ABCA3 mutation, or no defined genetic abnormalities. METHODS This retrospective cohort study involved 39 late preterm and term infants with URDS underwent a clinical exome sequencing at a tertiary neonatal intensive care unit between January 2013 and December 2019. Based on the sequencing result, the study subjects were classified into the homozygous or compound heterozygous mutations, single ABCA3 mutation, or no defined genetic abnormalities groups. The major outcomes, including mortality, the age of symptom onset and development of severe RDS, and the radiological score, were compared between the groups. RESULTS A novel splicing site (c.3862+1G>C) was identified in one twin with homozygous expression. Patients with homozygous or compound heterozygous ABCA3 mutations exhibited symptom onset and development of severe respiratory distress syndrome (RDS) earlier than those with a single mutation or no genetic abnormalities (P<0.05). These patients also had higher mortality rates than those without genetic abnormalities (P=0.029). The total radiological scores were 51.14±4.91, 44.20±6.54, 35.91±4.42 for patients with homozygous or compound heterozygous mutations, a single mutation, and a wild-type gene, respectively, with significant differences between the groups observed by pairwise comparison (all P<0.05). CONCLUSIONS Late preterm or term infants with URDS due to homozygous or compound heterozygous ABCA3 mutations exhibited more challenging clinical profiles than those without genetic abnormalities. However, whether this relationship exists between patients with a single ABCA3 mutation and those without genetic abnormalities warrants further study.
Collapse
Affiliation(s)
- Jianhui Wang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Juan Fan
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yuting Zhang
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lie Huang
- Department of Neonatology, First People's Hospital of Yinchuan, Ningxia Medical University, Yinchuan, China
| | - Yuan Shi
- Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
13
|
A New ABCA3 Gene Mutation c.3445G>A (p.Asp1149Asn) as a Causative Agent of Newborn Lethal Respiratory Distress Syndrome. MEDICINA-LITHUANIA 2019; 55:medicina55070389. [PMID: 31331098 PMCID: PMC6681327 DOI: 10.3390/medicina55070389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/09/2019] [Accepted: 07/17/2019] [Indexed: 11/16/2022]
Abstract
Mutations in adenosine triphosphate-binding cassette transporter A3 (ABCA3) (OMIM: 601615) gene constitute the most frequent genetic cause of severe neonatal respiratory distress syndrome (RDS) and interstitial lung disease (ILD) in children. Interstitial lung disease in children and especially in infants, in contrast to adults, is more likely to appear as a result of developmental deficits or is characterized by genetic aberrations of pulmonary surfactant homeostasis not responding to exogenous surfactant administration. The underlying ABCA3 gene mutations are commonly thought, regarding null mutations, to determine the clinical course of the disease while there exist mutation types, especially missense variants, whose effects on surfactant proteins are difficult to predict. In addition, clinical and radiological signs overlap with those of surfactant proteins B and C mutations making diagnosis challenging. We demonstrate a case of a one-term newborn male with lethal respiratory failure caused by homozygous missense ABCA3 gene mutation c.3445G>A (p.Asp1149Asn), which, to our knowledge, was not previously reported as a causative agent of newborn lethal RDS. Therapeutic strategies for patients with ABCA3 gene mutations are not sufficiently evidence-based. Therefore, the description of the clinical course and treatment of the disease in terms of a likely correlation between genotype and phenotype is crucial for the development of the optimal clinical approach for affected individuals.
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Mutations in genes encoding proteins critical for the production and function of pulmonary surfactant cause diffuse lung disease. Timely recognition and diagnosis of affected individuals is important for proper counseling concerning prognosis and recurrence risk. RECENT FINDINGS Involved genes include those encoding for surfactant proteins A, B, and C, member A3 of the ATP-binding cassette family, and for thyroid transcription factor 1. Clinical presentations overlap and range from severe and rapidly fatal neonatal lung disease to development of pulmonary fibrosis well into adult life. The inheritance patterns, course, and prognosis differ depending upon the gene involved, and in some cases the specific mutation. Treatment options are currently limited, with lung transplantation an option for patients with end-stage pulmonary fibrosis. Additional genetic disorders with overlapping pulmonary phenotypes are being identified through newer methods, although these disorders often involve other organ systems. SUMMARY Genetic disorders of surfactant production are rare but associated with significant morbidity and mortality. Diagnosis can be made invasively through clinically available genetic testing. Improved treatment options are needed and better understanding of the molecular pathophysiology may provide insights into treatments for other lung disorders causing fibrosis.
Collapse
Affiliation(s)
- Lawrence M Nogee
- Eudowood Neonatal Pulmonary Division, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Neonatal Lung Disease Associated with TBX4 Mutations. J Pediatr 2019; 206:286-292.e1. [PMID: 30413314 PMCID: PMC6389379 DOI: 10.1016/j.jpeds.2018.10.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/06/2023]
Abstract
Variable lung disease was documented in 2 infants with heterozygous TBX4 mutations; their clinical presentations, pathology, and outcomes were distinct. These findings demonstrate that TBX4 gene mutations are associated with neonatal respiratory failure and highlight the wide spectrum of clinicopathological outcomes that have implications for patient diagnosis and management.
Collapse
|
16
|
Klay D, Hoffman TW, Harmsze AM, Grutters JC, van Moorsel CHM. Systematic review of drug effects in humans and models with surfactant-processing disease. Eur Respir Rev 2018; 27:27/149/170135. [PMID: 29997245 DOI: 10.1183/16000617.0135-2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/12/2018] [Indexed: 12/14/2022] Open
Abstract
Fibrotic interstitial pneumonias are a group of rare diseases characterised by distortion of lung interstitium. Patients with mutations in surfactant-processing genes, such as surfactant protein C (SFTPC), surfactant protein A1 and A2 (SFTPA1 and A2), ATP binding cassette A3 (ABCA3) and Hermansky-Pudlak syndrome (HPS1, 2 and 4), develop progressive pulmonary fibrosis, often culminating in fatal respiratory insufficiency. Although many mutations have been described, little is known about the optimal treatment strategy for fibrotic interstitial pneumonia patients with surfactant-processing mutations.We performed a systematic literature review of studies that described a drug effect in patients, cell or mouse models with a surfactant-processing mutation. In total, 73 articles were selected, consisting of 55 interstitial lung disease case reports/series, two clinical trials and 16 cell or mouse studies. Clinical effect parameters included lung function, radiological characteristics and clinical symptoms, while experimental outcome parameters included chemokine/cytokine expression, surfactant trafficking, necrosis and apoptosis. SP600125, a c-jun N-terminal kinase (JNK) inhibitor, hydroxychloroquine and 4-phenylbutyric acid were most frequently studied in disease models and lead to variable outcomes, suggesting that outcome is mutation dependent.This systematic review summarises effect parameters for future studies on surfactant-processing disorders in disease models and provides directions for future trials in affected patients.
Collapse
Affiliation(s)
- Dymph Klay
- Interstitial Lung Disease Center of Excellence, Dept of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Thijs W Hoffman
- Interstitial Lung Disease Center of Excellence, Dept of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Ankie M Harmsze
- Dept of Clinical Pharmacy, St Antonius Hospital, Nieuwegein, The Netherlands
| | - Jan C Grutters
- Interstitial Lung Disease Center of Excellence, Dept of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands.,Division of Heart and Lung, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Coline H M van Moorsel
- Interstitial Lung Disease Center of Excellence, Dept of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands .,Division of Heart and Lung, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
17
|
Schindlbeck U, Wittmann T, Höppner S, Kinting S, Liebisch G, Hegermann J, Griese M. ABCA3 missense mutations causing surfactant dysfunction disorders have distinct cellular phenotypes. Hum Mutat 2018; 39:841-850. [PMID: 29505158 DOI: 10.1002/humu.23416] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/25/2018] [Accepted: 02/27/2018] [Indexed: 11/11/2022]
Abstract
Mutations in the ATP-binding cassette subfamily A member 3 (ABCA3) gene are the most common monogenetic cause of surfactant dysfunction disorders in newborns and interstitial lung diseases in children and young adults. Although the effect of mutations resulting in truncated or incomplete proteins can be predicted, the consequences of missense variants cannot be as easily. Our aim was to investigate the intracellular handling and disturbance of the cellular surfactant system in a stable cell model with several different clinically relevant ABCA3 missense mutations. We found that the investigated missense mutations within the ABCA3 gene affect surfactant homeostasis in different ways: first by disrupting intracellular ABCA3 protein localization (c.643C > A, p.Q215K; c.2279T > G, p.M760R), second by impairing the lipid transport of ABCA3 protein (c.875A > T, p.E292V; c.4164G > C, p.K1388N), and third by yet undetermined mechanisms predisposing for the development of interstitial lung diseases despite correct localization and normal lipid transport of the variant ABCA3 protein (c.622C > T, p.R208W; c.863G > A, p.R288K; c.2891G > A, p.G964D). In conclusion, we classified cellular consequences of missense ABCA3 sequence variations leading to pulmonary disease of variable severity. The corresponding molecular pathomechanisms of such ABCA3 variants may specifically be addressed by targeted treatments.
Collapse
Affiliation(s)
- Ulrike Schindlbeck
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, German Centre for Lung Research (DZL), Munich, Germany
| | - Thomas Wittmann
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, German Centre for Lung Research (DZL), Munich, Germany
| | - Stefanie Höppner
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, German Centre for Lung Research (DZL), Munich, Germany
| | - Susanna Kinting
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, German Centre for Lung Research (DZL), Munich, Germany
| | - Gerhard Liebisch
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, German Center for Lung Research (DZL), Hannover, Germany
| | - Matthias Griese
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, German Centre for Lung Research (DZL), Munich, Germany
| |
Collapse
|
18
|
Griese M. Chronic interstitial lung disease in children. Eur Respir Rev 2018; 27:27/147/170100. [PMID: 29436403 PMCID: PMC9488630 DOI: 10.1183/16000617.0100-2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/24/2017] [Indexed: 12/05/2022] Open
Abstract
Children's interstitial lung diseases (chILD) are increasingly recognised and contain many lung developmental and genetic disorders not yet identified in adult pneumology. Worldwide, several registers have been established. The Australasian Registry Network for Orphan Lung Disease (ARNOLD) has identified problems in estimating rare disease prevalence; focusing on chILD in immunocompetent patients, a period prevalence of 1.5 cases per million children and a mortality rate of 7% were determined. The chILD-EU register highlighted the workload to be covered per patient included and provided protocols for diagnosis and initial treatment, similar to the United States chILD network. Whereas case reports may be useful for young physicians to practise writing articles, cohorts of patients can catapult progress, as demonstrated by recent studies on persistent tachypnoea of infancy, hypersensitivity pneumonitis in children and interstitial lung disease related to interferonopathies from mutations in transmembrane protein 173. Translational research has linked heterozygous mutations in the ABCA3 transporter to an increased risk of interstitial lung diseases, not only in neonates, but also in older children and adults. For surfactant dysfunction disorders in infancy and early childhood, lung transplantation was reported to be as successful as in adult patients. Mutual potentiation of paediatric and adult pneumologists is mandatory in this rapidly extending field for successful future development. This brief review highlights publications in the field of paediatric interstitial lung disease as reviewed during the Clinical Year in Review session presented at the 2017 European Respiratory Society (ERS) Annual Congress in Milan, Italy. It was commissioned by the ERS and critically presents progress made as well as drawbacks. Successful developments in chILD are register/consortia based and potentiate paediatric and adult pneumologyhttp://ow.ly/dgrO30hBbRJ
Collapse
Affiliation(s)
- Matthias Griese
- Hauner Children's Hospital, University of Munich, German Center for Lung Research, Munich, Germany
| |
Collapse
|
19
|
Höppner S, Kinting S, Torrano AA, Schindlbeck U, Bräuchle C, Zarbock R, Wittmann T, Griese M. Quantification of volume and lipid filling of intracellular vesicles carrying the ABCA3 transporter. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2330-2335. [DOI: 10.1016/j.bbamcr.2017.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/23/2017] [Accepted: 08/31/2017] [Indexed: 12/20/2022]
|