1
|
Squiers GT, Wan C, Gorder J, Puscher H, Shen J. A Commander-independent function of COMMD3 in endosomal trafficking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.12.628173. [PMID: 39763841 PMCID: PMC11702528 DOI: 10.1101/2024.12.12.628173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Endosomal recycling is a branch of intracellular membrane trafficking that retrieves endocytosed cargo proteins from early and late endosomes to prevent their degradation in lysosomes. A key player in endosomal recycling is the Commander complex, a 16-subunit protein assembly that cooperates with other endosomal factors to recruit cargo proteins and facilitate the formation of tubulo-vesicular carriers. While the crucial role of Commander in endosomal recycling is well established, its molecular mechanism remains poorly understood. Here, we genetically dissected the Commander complex using unbiased genetic screens and comparative targeted mutations. Unexpectedly, our findings revealed a Commander-independent function for COMMD3, a subunit of the Commander complex, in endosomal recycling. COMMD3 regulates a subset of cargo proteins independently of the other Commander subunits. The Commander-independent function of COMMD3 is mediated by its N-terminal domain (NTD), which binds and stabilizes ADP-ribosylation factor 1 (ARF1), a small GTPase regulating endosomal recycling. Mutations disrupting the COMMD3-ARF1 interaction diminish ARF1 expression and impair COMMD3-dependent cargo recycling. These data provide direct evidence that Commander subunits can function outside the holo-complex and raise the intriguing possibility that components of other membrane trafficking complexes may also possess functions beyond their respective complexes.
Collapse
Affiliation(s)
- Galen T. Squiers
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Chun Wan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - James Gorder
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Harrison Puscher
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Jingshi Shen
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
2
|
Singla A, Boesch DJ, Joyce Fung HY, Ngoka C, Enriquez AS, Song R, Kramer DA, Han Y, Juneja P, Billadeau DD, Bai X, Chen Z, Turer EE, Burstein E, Chen B. Structural basis for Retriever-SNX17 assembly and endosomal sorting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584676. [PMID: 38559023 PMCID: PMC10980035 DOI: 10.1101/2024.03.12.584676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
During endosomal recycling, Sorting Nexin 17 (SNX17) facilitates the transport of numerous membrane cargo proteins by tethering them to the Retriever complex. Despite its importance, the mechanisms underlying this interaction have remained elusive. Here, we report the structure of the Retriever-SNX17 complex determined using cryogenic electron microscopy (cryo-EM). Our structure reveals that the C-terminal tail of SNX17 engages with a highly conserved interface between the VPS35L and VPS26C subunits of Retriever. Through comprehensive biochemical, cellular, and proteomic analyses, we demonstrate that disrupting this interface impairs the Retriever-SNX17 interaction, subsequently affecting the recycling of SNX17-dependent cargos and altering the composition of the plasma membrane proteome. Intriguingly, we find that the SNX17-binding pocket on Retriever can be utilized by other ligands that share a consensus acidic C-terminal tail motif. By showing how SNX17 is linked to Retriever, our findings uncover a fundamental mechanism underlying endosomal trafficking of critical cargo proteins and reveal a mechanism by which Retriever can engage with other regulatory factors.
Collapse
Affiliation(s)
- Amika Singla
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Daniel J. Boesch
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Ho Yee Joyce Fung
- Department of Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Chigozie Ngoka
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Avery S. Enriquez
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Ran Song
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Daniel A. Kramer
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Yan Han
- Department of Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Puneet Juneja
- Cryo-EM facility, Office of Biotechnology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Daniel D. Billadeau
- Division of Oncology Research, College of Medicine, Mayo Clinic, Rochester MN, 55905, USA
| | - Xiaochen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Zhe Chen
- Department of Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Emre E. Turer
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ezra Burstein
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
- On sabbatical leave at Department of Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| |
Collapse
|