1
|
Cunningham CJ, Kuyukina MS, Ivshina IB, Konev AI, Peshkur TA, Knapp CW. Potential risks of antibiotic resistant bacteria and genes in bioremediation of petroleum hydrocarbon contaminated soils. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1110-1124. [PMID: 32236187 DOI: 10.1039/c9em00606k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bioremediation represents a sustainable approach to remediating petroleum hydrocarbon contaminated soils. One aspect of sustainability includes the sourcing of nutrients used to stimulate hydrocarbon-degrading microbial populations. Organic nutrients such as animal manure and sewage sludge may be perceived as more sustainable than conventional inorganic fertilizers. However, organic nutrients often contain antibiotic residues and resistant bacteria (along with resistance genes and mobile genetic elements). This is further exacerbated since antibiotic resistant bacteria may become more abundant in contaminated soils due to co-selection pressures from pollutants such as metals and hydrocarbons. We review the issues surrounding bioremediation of petroleum-hydrocarbon contaminated soils, as an example, and consider the potential human-health risks from antibiotic resistant bacteria. While awareness is coming to light, the relationship between contaminated land and antibiotic resistance remains largely under-explored. The risk of horizontal gene transfer between soil microorganisms, commensal bacteria and/or human pathogens needs to be further elucidated, and the environmental triggers for gene transfer need to be better understood. Findings of antibiotic resistance from animal manures are emerging, but even fewer bioremediation studies using sewage sludge have made any reference to antibiotic resistance. Resistance mechanisms, including those to antibiotics, have been considered by some authors to be a positive trait associated with resilience in strains intended for bioremediation. Nevertheless, recognition of the potential risks associated with antibiotic resistant bacteria and genes in contaminated soils appears to be increasing and requires further investigation. Careful selection of bacterial candidates for bioremediation possessing minimal antibiotic resistance as well as pre-treatment of organic wastes to reduce selective pressures (e.g., antibiotic residues) are suggested to prevent environmental contamination with antibiotic-resistant bacteria and genes.
Collapse
Affiliation(s)
- Colin J Cunningham
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK
| | | | | | | | | | | |
Collapse
|
3
|
Isolation of endosulfan sulfate-degrading Rhodococcus koreensis strain S1-1 from endosulfan contaminated soil and identification of a novel metabolite, endosulfan diol monosulfate. Biochem Biophys Res Commun 2016; 473:1094-1099. [DOI: 10.1016/j.bbrc.2016.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 11/18/2022]
|
4
|
Thamhesl M, Apfelthaler E, Schwartz-Zimmermann HE, Kunz-Vekiru E, Krska R, Kneifel W, Schatzmayr G, Moll WD. Rhodococcus erythropolis MTHt3 biotransforms ergopeptines to lysergic acid. BMC Microbiol 2015; 15:73. [PMID: 25887091 PMCID: PMC4411749 DOI: 10.1186/s12866-015-0407-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 03/11/2015] [Indexed: 12/04/2022] Open
Abstract
Background Ergopeptines are a predominant class of ergot alkaloids produced by tall fescue grass endophyte Neotyphodium coenophialum or cereal pathogen Claviceps purpurea. The vasoconstrictive activity of ergopeptines makes them toxic for mammals, and they can be a problem in animal husbandry. Results We isolated an ergopeptine degrading bacterial strain, MTHt3, and classified it, based on its 16S rDNA sequence, as a strain of Rhodococcus erythropolis (Nocardiaceae, Actinobacteria). For strain isolation, mixed microbial cultures were obtained from artificially ergot alkaloid-enriched soil, and provided with the ergopeptine ergotamine in mineral medium for enrichment. Individual colonies derived from such mixed cultures were screened for ergotamine degradation by high performance liquid chromatography and fluorescence detection. R. erythropolis MTHt3 converted ergotamine to ergine (lysergic acid amide) and further to lysergic acid, which accumulated as an end product. No other tested R. erythropolis strain degraded ergotamine. R. erythropolis MTHt3 degraded all ergopeptines found in an ergot extract, namely ergotamine, ergovaline, ergocristine, ergocryptine, ergocornine, and ergosine, but the simpler lysergic acid derivatives agroclavine, chanoclavine, and ergometrine were not degraded. Temperature and pH dependence of ergotamine and ergine bioconversion activity was different for the two reactions. Conclusions Degradation of ergopeptines to ergine is a previously unknown microbial reaction. The reaction end product, lysergic acid, has no or much lower vasoconstrictive activity than ergopeptines. If the genes encoding enzymes for ergopeptine catabolism can be cloned and expressed in recombinant hosts, application of ergopeptine and ergine degrading enzymes for reduction of toxicity of ergot alkaloid-contaminated animal feed may be feasible.
Collapse
Affiliation(s)
| | - Elisabeth Apfelthaler
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Research, Center for Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Konrad Lorenz Straße 20, 3430, Tulln, Austria.
| | - Heidi Elisabeth Schwartz-Zimmermann
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Research, Center for Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Konrad Lorenz Straße 20, 3430, Tulln, Austria.
| | - Elisavet Kunz-Vekiru
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Research, Center for Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Konrad Lorenz Straße 20, 3430, Tulln, Austria.
| | - Rudolf Krska
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Research, Center for Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Konrad Lorenz Straße 20, 3430, Tulln, Austria.
| | - Wolfgang Kneifel
- Christian Doppler Laboratory for Innovative Bran Biorefinery, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| | | | | |
Collapse
|
5
|
Effect of extracellular polymeric substances on the mechanical properties of Rhodococcus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:518-26. [DOI: 10.1016/j.bbamem.2014.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/01/2014] [Accepted: 11/06/2014] [Indexed: 11/19/2022]
|
6
|
Efficient biostimulation of native and introduced quorum-quenching Rhodococcus erythropolis populations is revealed by a combination of analytical chemistry, microbiology, and pyrosequencing. Appl Environ Microbiol 2011; 78:481-92. [PMID: 22081576 DOI: 10.1128/aem.06159-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Degradation of the quorum-sensing (QS) signals known as N-acylhomoserine lactones (AHL) by soil bacteria may be useful as a beneficial trait for protecting crops, such as potato plants, against the worldwide pathogen Pectobacterium. In this work, analytical chemistry and microbial and molecular approaches were combined to explore and compare biostimulation of native and introduced AHL-degrading Rhodococcus erythropolis populations in the rhizosphere of potato plants cultivated in farm greenhouses under hydroponic conditions. We first identified gamma-heptalactone (GHL) as a novel biostimulating agent that efficiently promotes plant root colonization by AHL-degrading R. erythropolis population. We also characterized an AHL-degrading biocontrol R. erythropolis isolate, R138, which was introduced in the potato rhizosphere. Moreover, root colonization by AHL-degrading bacteria receiving different combinations of GHL and R138 treatments was compared by using a cultivation-based approach (percentage of AHL-degrading bacteria), pyrosequencing of PCR-amplified rrs loci (total bacterial community), and quantitative PCR (qPCR) of the qsdA gene, which encodes an AHL lactonase in R. erythropolis. Higher densities of the AHL-degrading R. erythropolis population in the rhizosphere were observed when GHL treatment was associated with biocontrol strain R138. Under this condition, the introduced R. erythropolis population displaced the native R. erythropolis population. Finally, chemical analyses revealed that GHL, gamma-caprolactone (GCL), and their by-products, gamma-hydroxyheptanoic acid and gamma-hydroxycaproic acid, rapidly disappeared from the rhizosphere and did not accumulate in plant tissues. This integrative study highlights biostimulation as a potential innovative approach for improving root colonization by beneficial bacteria.
Collapse
|
7
|
Solyanikova I, Golovleva L. Biochemical features of the degradation of pollutants by Rhodococcus as a basis for contaminated wastewater and soil cleanup. Microbiology (Reading) 2011. [DOI: 10.1134/s0026261711050158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Alisi C, Musella R, Tasso F, Ubaldi C, Manzo S, Cremisini C, Sprocati AR. Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:3024-32. [PMID: 19201450 DOI: 10.1016/j.scitotenv.2009.01.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 12/17/2008] [Accepted: 01/09/2009] [Indexed: 05/20/2023]
Abstract
The aim of the work is to assess the feasibility of bioremediation of a soil, containing heavy metals and spiked with diesel oil (DO), through a bioaugmentation strategy based on the use of a microbial formula tailored with selected native strains. The soil originated from the metallurgic area of Bagnoli (Naples, Italy). The formula, named ENEA-LAM, combines ten bacterial strains selected for multiple resistance to heavy metals among the native microbial community. The biodegradation process of diesel oil was assessed in biometer flasks by monitoring the following parameters: DO composition by GC-MS, CO2 evolution rate, microbial load and composition of the community by T-RFLP, physiological profile in Biolog ECOplates and ecotoxicity of the system. The application of this microbial formula allowed to obtain, in the presence of heavy metals, the complete degradation of n-C(12-20), the total disappearance of phenantrene, a 60% reduction of isoprenoids and an overall reduction of about 75% of the total diesel hydrocarbons in 42 days. Concurrently with the increase of metabolic activity at community level and the microbial load, the gradual abatement of the ecotoxicity was observed. The T-RFLP analysis highlighted that most of the ENEA-LAM strains survived and some minor native strains, undetectable in the soil at the beginning of the experiment, developed. Such a bioaugmentation approach allows the newly established microbial community to strike a balance between the introduced and the naturally present microorganisms. The results indicate that the use of a tailored microbial formula may efficiently facilitate and speed up the bioremediation of matrices co-contaminated with hydrocarbons and heavy metals. The study represents the first step for the scale up of the system and should be verified at a larger scale. In this view, this bioaugmentation strategy may contribute to overcome a critical bottleneck of the bioremediation technology.
Collapse
Affiliation(s)
- Chiara Alisi
- ENEA, Department of Environment, Global Change and Sustainable Development, CR-Casaccia, Italy.
| | | | | | | | | | | | | |
Collapse
|
10
|
Shen FT, Ho MJ, Huang HR, Arun A, Rekha P, Young CC. Molecular detection and phylogenetic characterization of Gordonia species in heavily oil-contaminated soils. Res Microbiol 2008; 159:522-9. [DOI: 10.1016/j.resmic.2008.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 06/06/2008] [Accepted: 07/15/2008] [Indexed: 11/28/2022]
|