1
|
Lou J, Wu F, He W, Hu R, Cai Z, Chen G, Zhao W, Zhang Z, Si Y. Hesperidin activates Nrf2 to protect cochlear hair cells from cisplatin-induced damage. Redox Rep 2024; 29:2341470. [PMID: 38629504 PMCID: PMC11025410 DOI: 10.1080/13510002.2024.2341470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Cisplatin is widely employed in clinical oncology as an anticancer chemotherapy drug in clinical practice and is known for its severe ototoxic side effects. Prior research indicates that the accumulation of reactive oxygen species (ROS) plays a pivotal role in cisplatin's inner ear toxicity. Hesperidin is a flavanone glycoside extracted from citrus fruits that has anti-inflammatory and antioxidant effects. Nonetheless, the specific pharmacological actions of hesperidin in alleviating cisplatin-induced ototoxicity remain elusive. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical mediator of the cellular oxidative stress response, is influenced by hesperidin. Activation of Nrf2 was shown to have a protective effect against cisplatin-induced ototoxicity. The potential of hesperidin to stimulate Nrf2 in attenuating cisplatin's adverse effects on the inner ear warrants further investigation. This study employs both in vivo and in vitro models of cisplatin ototoxicity to explore this possibility. Our results reveal that hesperidin mitigates cisplatin-induced ototoxicity by activating the Nrf2/NQO1 pathway in sensory hair cells, thereby reducing ROS accumulation, preventing hair cell apoptosis, and alleviating hearing loss.
Collapse
Affiliation(s)
- Jintao Lou
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Fan Wu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wuhui He
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Rui Hu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ziyi Cai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Guisheng Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wenji Zhao
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zhigang Zhang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yu Si
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Ma W, Tan X, Xie Z, Yu J, Li P, Lin X, Ouyang S, Liu Z, Hou Q, Xie N, Peng T, Li L, Dai Z, Chen X, Xie W. P53: A Key Target in the Development of Osteoarthritis. Mol Biotechnol 2024; 66:1-10. [PMID: 37154864 DOI: 10.1007/s12033-023-00736-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/25/2023] [Indexed: 05/10/2023]
Abstract
Osteoarthritis (OA), a chronic degenerative disease characterized mainly by damage to the articular cartilage, is increasingly relevant to the pathological processes of senescence, apoptosis, autophagy, proliferation, and differentiation of chondrocytes. Clinical strategies for osteoarthritis can only improve symptoms and even along with side effects due to age, sex, disease, and other factors. Therefore, there is an urgent need to identify new ideas and targets for current clinical treatment. The tumor suppressor gene p53, which has been identified as a potential target for tumor therapeutic intervention, is responsible for the direct induction of the pathological processes involved in OA modulation. Consequently, deciphering the characteristics of p53 in chondrocytes is essential for investigating OA pathogenesis due to p53 regulation in an array of signaling pathways. This review highlights the effects of p53 on senescence, apoptosis, and autophagy of chondrocytes and its role in the development of OA. It also elucidates the underlying mechanism of p53 regulation in OA, which may help provide a novel strategies for the clinical treatment of OA.
Collapse
Affiliation(s)
- Wentao Ma
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoqian Tan
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Zhongcheng Xie
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Jiang Yu
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Pin Li
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoyan Lin
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Siyu Ouyang
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Zhiyang Liu
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Qin Hou
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Nan Xie
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Tianhong Peng
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Liang Li
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Zhu Dai
- Department of Orthopedics, Hengyang Medical School, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan, China.
| | - Xi Chen
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
3
|
Chen Q, Kao X, Gao Y, Chen J, Dong Z, Chen C. Increase in NO causes osteoarthritis and chondrocyte apoptosis and chondrocyte ERK plays a protective role in the process. Mol Biol Rep 2021; 48:7303-7312. [PMID: 34626310 DOI: 10.1007/s11033-021-06731-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/29/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Nitric oxide (NO) and reactive oxygen species (ROS) play an important role in the pathology of human osteoarthritis (OA). Ankylosing spondylitis (AS) and atypical OA have similar clinical manifestations and often require differential diagnosis. The mechanism is however not totally clear yet. This study aims to investigate the effects of excessive NO-ROS in OA patients and the effects of extracellular signal-regulated kinases (ERK) pathway in NO-induced apoptosis of chondrocytes during OA progress. METHODS AND RESULTS Serum samples from OA or AS as pathological control patients and healthy controls were collected for NO and related chemical measurements. The rabbit articular chondrocytes were cultured in vitro, and NO was applied by Sodium Nitroprusside (SNP) in culture medium to mimic OA condition in patients. The level of SNP-evoked chondrocyte apoptosis with or without PD98059 (ERK-specific inhibitor) was evaluated by TUNEL assay, Annexin V flow cytometry and Western blotting. The activity and mRNA expression of caspase-3 in chondrocytes were measured by assay kits and RT-PCR. The levels of NO and malondialdehyde (MDA) in serum were significantly higher in OA patients, while only MDA was significantly higher in AS patients. However, the level of superoxide dismutase (SOD) was lower in both OA and AS patients. SNP induced chondrocyte apoptosis was enhanced by PD98059 with increased protein expression and functional activity of caspase-3. CONCLUSIONS The increase in nitric oxide occurs specifically in OA patients. ERK pathway may play a protective role on the NO-induced chondrocyte apoptosis, and inhibition of ERK pathway enhances the NO-induced apoptosis.
Collapse
Affiliation(s)
- Qun Chen
- Institute of Endemic Diseases, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Xibin Kao
- Institute for Hygiene of Ordnance Industry, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Yan Gao
- Institute of Health Supervision, Beilin District, Xi'an, 710003, Shaanxi, People's Republic of China
| | - Jinghong Chen
- Institute of Endemic Diseases, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Zhaoheng Dong
- Shandong Shenghua Electronic New Materials Co., Ltd, Yantai, Shandong, China
| | - Chen Chen
- Endocrinology, Faculty of Medicine, School of Biomedical Sciences,, University of Queensland, Brisbane, Australia
| |
Collapse
|
4
|
Ahmad MR, Badar W, Ullah Khan MA, Mahmood A, Latif N, Iqbal T, Khan Assir MZ, Sleem MA. Combination of preconditioned adipose-derived mesenchymal stem cells and platelet-rich plasma improves the repair of osteoarthritis in rat. Regen Med 2020; 15:2285-2295. [PMID: 33326341 DOI: 10.2217/rme-2020-0040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: To observe the combined effect of platelet-rich plasma (PRP) and preconditioned adipose-derived mesenchymal stem cells (ADMSCs) on the injured articular cartilage of the rat. Materials & methods: Animals in the study received an intra-articular injection of PRP and preconditioned ADMSCs, both in combination and separately. The response to therapeutic intervention was evaluated by inflammatory markers, proteoglycans content, chondrogenesis and gene expression analyses. Results: The combined therapy resulted in a reduction of IL-6 and TNF-α, increased proteoglycan content of the articular cartilage, upregulation of Acan, Col2a1 and PCNA genes. Downregulation of Col1a1, Col10a1 and Casp3 genes was observed as compared with the untreated osteoarthritis rat model. Conclusion: PRP potentiates the effects of ADMSCs on the repair of damaged articular cartilage.
Collapse
Affiliation(s)
- Muhammad Rauf Ahmad
- Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan.,Center of Excellence in Molecular Biology, University of The Punjab, Lahore, Pakistan
| | - Wafa Badar
- Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | | | - Azra Mahmood
- Center of Excellence in Molecular Biology, University of The Punjab, Lahore, Pakistan
| | - Noreen Latif
- Center of Excellence in Molecular Biology, University of The Punjab, Lahore, Pakistan
| | - Tariq Iqbal
- Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Muhammad Zaman Khan Assir
- Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Mushtaq A Sleem
- Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
5
|
Cai W, Li H, Zhang Y, Han G. Identification of key biomarkers and immune infiltration in the synovial tissue of osteoarthritis by bioinformatics analysis. PeerJ 2020; 8:e8390. [PMID: 31988808 PMCID: PMC6970550 DOI: 10.7717/peerj.8390] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/13/2019] [Indexed: 01/15/2023] Open
Abstract
Background Osteoarthritis (OA) is the most common chronic degenerative joint disease and is mainly characterized by cartilage degeneration, subcartilage bone hyperplasia, osteophyte formation and joint space stenosis. Recent studies showed that synovitis might also be an important pathological change of OA. However, the molecular mechanisms of synovitis in OA are still not well understood. Objective This study was designed to identify key biomarkers and immune infiltration in the synovial tissue of osteoarthritis by bioinformatics analysis. Materials and Methods The gene expression profiles of GSE12021, GSE55235 and GSE55457 were downloaded from the GEO database. The differentially expressed genes (DEGs) were identified by the LIMMA package in Bioconductor, and functional enrichment analyses were performed. A protein-protein interaction network (PPI) was constructed, and module analysis was performed using STRING and Cytoscape. The CIBERSORT algorithm was used to analyze the immune infiltration of synovial tissue between OA and normal controls. Results A total of 106 differentially expressed genes, including 68 downregulated genes and 38 upregulated genes, were detected. The PPI network was assessed, and the most significant module containing 14 hub genes was identified. Gene Ontology analysis revealed that the hub genes were significantly enriched in immune cell chemotaxis and cytokine activity. KEGG pathway analysis showed that the hub genes were significantly enriched in the rheumatoid arthritis signaling pathway, IL-17 signaling pathway and cytokine-cytokine receptor interaction signaling pathway. The immune infiltration profiles varied significantly between osteoarthritis and normal controls. Compared with normal tissue, OA synovial tissue contained a higher proportion of memory B cells, naive CD4+ T cells, regulatory T cells, resting dendritic cells and resting mast cells, while naive CD4+ T cells, activated NK cells, activated mast cells and eosinophils contributed to a relatively lower portion (P > 0.05). Finally, the expression levels of 11 hub genes were confirmed by RT-PCR. Conclusion The hub genes and the difference in immune infiltration in synovial tissue between osteoarthritis and normal controls might provide new insight for understanding OA development.
Collapse
Affiliation(s)
- Weisong Cai
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haohuan Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yubiao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guangtao Han
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Yan L, Zhou L, Xie D, Du W, Chen F, Yuan Q, Tong P, Shan L, Efferth T. Chondroprotective effects of platelet lysate towards monoiodoacetate-induced arthritis by suppression of TNF-α-induced activation of NF-ĸB pathway in chondrocytes. Aging (Albany NY) 2019; 11:2797-2811. [PMID: 31089001 PMCID: PMC6535074 DOI: 10.18632/aging.101952] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 05/02/2019] [Indexed: 12/14/2022]
Abstract
Platelet lysate (PL) contains a cocktail of growth factors that actively participates in cartilage repair. This study was designed to determine the effect and mechanism of PL on osteoarthritis (OA). An arthritis model was established to mimic human OA by intra-articular injection of monoiodoacetate (MIA) to Sprague Dawley (SD) rats. The model was weekly treated with PL by intra-articular injection. Thermal withdrawal latency, mechanical withdrawal threshold, and treadmill gait were tested for pain behavior observation. Histopathological and immunohistochemical analyses were conducted for evaluating cartilage degradation. Real time PCRs and Western blots were conducted to elucidate the mechanism of PL on primary chondrocytes. Results showed that, in vivo, PL significantly attenuated pain symptoms and exerted chondrocyte-protective and extracellular matrix (ECM)-modifying effect on the arthritic cartilage in a dose-dependent manner. The in situ expressions of type II Collagen (Col2) and matrix metalloproteinase 13 (Mmp13) in the arthritic cartilage was abnormal and was restored by PL. In vitro, PL significantly restored tumor necrosis factor α (TNF-α)-suppressed anabolic gene expression (Col2 and aggrecan) and TNF-α-increased catabolic gene expression (Col10, Mmp13, Adamts5, and Adamts9) in chondrocytes. The effects were mediated by TNF-α downstream signaling, including inhibition of NF-κB and c-Jun activities. This study provides certain knowledge of anti-OA effect and TNF signaling-related mechanism of PL, placing it as a promising and alternative option for OA therapy in the future.
Collapse
Affiliation(s)
- Li Yan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
- Center for Stem Cell Translational Research, Zhejiang Chinese Medical University, Hangzhou, China
- Equal contribution
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
- Center for Stem Cell Translational Research, Zhejiang Chinese Medical University, Hangzhou, China
- Equal contribution
| | - Danting Xie
- Center for Stem Cell Translational Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenxi Du
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangming Chen
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang Yuan
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peijian Tong
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
- Center for Stem Cell Translational Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
7
|
Zhang Z, Li M, Ma X, Zhou SL, Ren ZW, Qiu YS. GADD45β-I attenuates oxidative stress and apoptosis via Sirt3-mediated inhibition of ER stress in osteoarthritis chondrocytes. Chem Biol Interact 2018; 296:76-82. [PMID: 30237062 DOI: 10.1016/j.cbi.2018.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/23/2018] [Accepted: 09/16/2018] [Indexed: 01/01/2023]
Abstract
Osteoarthritis (OA) is one of the most characterized joint diseases associated with chondrocyte apoptosis. JNK plays an important role in apoptosis in many pathological conditions, but systemic inhibition of JNK was shown to result in detrimental side effects. MAPK kinase 7 (MKK7) is a direct upstream kinase that regulates JNK and has been shown to activate JNK specifically under toxic conditions. In this study, we investigated the effect of GADD45β-I, a cell-permeable inhibitor targeted for MKK7, on IL-1β-induced cytotoxicity in rat chondrocytes. The results showed that IL-1β exposure resulted in toxicity in a dose-dependent manner, which was nullified by endoplasmic reticulum (ER) stress inhibitors. GADD45β-I significantly preserved cell survival, inhibited oxidative injury and reduced apoptosis after IL-1β treatment. ER stress in chondrocytes was attenuated by GADD45β-I, as evidenced by reduced levels of GRP78 and CHOP, as well as decreased caspase-12 cleavage. In addition, GADD45β-I increased the enzymatic activities of mitochondrial antioxidant enzymes, including IDH2, GSH-Px and SOD2. GADD45β-I significantly upregulated the expression of Sirt3 and attenuated IL-1β-induced acetylation of SOD2. Furthermore, GADD45β-I-induced inhibition of ER stress and protection in chondrocytes were partially reversed by knockdown of Sirt3. In conclusion, our data indicated that GADD45β-I protected chondrocytes against IL-1β through Sirt3-mediated inhibition of ER stress. Targeting MKK7 might be an ideal therapeutic strategy for reducing chondrocyte apoptosis in OA.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Orthopaedics, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Meng Li
- Department of Orthopaedics, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xing Ma
- Department of Orthopaedics, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Shuang-Li Zhou
- Department of Orthopaedics, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhi-Wei Ren
- Department of Orthopaedics, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yu-Sheng Qiu
- Department of Orthopaedics, The First Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
8
|
Kao XB, Chen Q, Gao Y, Fan P, Chen JH, Wang ZL, Wang YQ, Chen YN, Yan YP. SP600125 blocks the proteolysis of cytoskeletal proteins in apoptosis induced by gas signaling molecule (NO) via decreasing the activation of caspase-3 in rabbit chondrocytes. Eur J Pharmacol 2018; 824:40-47. [PMID: 29409910 DOI: 10.1016/j.ejphar.2018.01.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 11/25/2022]
Abstract
NO plays a key role in the pathological mechanisms of articular diseases. As cytoskeletal proteins are responsible for the polymerization, stabilization, and dynamics of the cytoskeleton network, we investigated whether cytoskeletal proteins are the intracellular pathological targets of NO. We aimed at clarifying whether the cytoskeleton perturbations involved in apoptosis are induced in rabbit articular chondrocytes by NO, which can be liberated by sodium nitroprusside (SNP) treatment. The first passage rabbit articular chondrocytes were cultured as monolayer for the experiments, and the effects of NO were tested in the presence of JNK-specific inhibitor, SP600125. SNP treatment of cultured chondrocytes caused significant apoptosis in a concentration-dependent manner (time and dose), as evaluated by TUNEL assay and Annexin V flow cytometry, while the apoptosis was reduced by the SP600125 addition 30 min before SNP treatment. Besides, SP600125 decreased significantly the protein expression of total caspase-3 and the intracellular gene expression of caspase-3, measured by Western blot analysis and PCR. SP600125 also increased the cytoskeletal protein expressions. These results suggested that JNK pathway plays a critical role in the NO-induced chondrocyte apoptosis, and SP600125 treatment blocks the dissolution of the cytoskeletal proteins via activation of caspase-3 pathways.
Collapse
Affiliation(s)
- Xi-Bin Kao
- The Fourth Military Medical University, Changle Western Road, 710032, People's Republic of China; Institute for Hygiene of Ordnance Industry, Xi'an, 710065 Shaanxi, People's Republic of China
| | - Qun Chen
- Institute of Endemic Diseases, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission of the people's Rupublic of China, Xi'an Jiaotong University Health Science Center, People's Republic of China
| | - Yan Gao
- Institute of Health Supervision, Beilin District, Xi'an 710003, Shaanxi, People's Republic of China
| | - Pin Fan
- Shaanxi Province Hospital of Traditional Chinese Medicine, People's Republic of China
| | - Jing-Hong Chen
- Institute of Endemic Diseases, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission of the people's Rupublic of China, Xi'an Jiaotong University Health Science Center, People's Republic of China
| | - Zhi-Lun Wang
- Institute of Endemic Diseases, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission of the people's Rupublic of China, Xi'an Jiaotong University Health Science Center, People's Republic of China
| | - Yan-Qi Wang
- Institute for Hygiene of Ordnance Industry, Xi'an, 710065 Shaanxi, People's Republic of China
| | - Ya-Ni Chen
- Institute for Hygiene of Ordnance Industry, Xi'an, 710065 Shaanxi, People's Republic of China
| | - Yong-Ping Yan
- The Fourth Military Medical University, Changle Western Road, 710032, People's Republic of China.
| |
Collapse
|
9
|
An optical probe for detecting chondrocyte apoptosis in response to mechanical injury. Sci Rep 2017; 7:10906. [PMID: 28883614 PMCID: PMC5589871 DOI: 10.1038/s41598-017-10653-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 08/10/2017] [Indexed: 11/08/2022] Open
Abstract
Cartilage injury induced by acute excessive contact stress is common and mostly affects young adult. Although early detection of cartilage injury may prevent serious and lifelong arthritic complications, early detection and treatment is not possible due to the lack of a reliable detection method. Since chondrocyte injury and subsequent cell death are the early signs of cartilage injury, it is likely that cartilage cell apoptosis can be used to predict the extent of injury. To test this hypothesis, a near infrared probe was fabricated to have high affinity to apoptotic cells. In vitro tests show that this apoptosis probe has low toxicity, high specificity, and high affinity to apoptotic cells. In addition, there is a positive relationship between apoptotic cell numbers and fluorescence intensities. Using a mouse xiphoid injury model, we found significant accumulation of the apoptosis probes at the injured xiphoid cartilage site. There was also a positive correlation between probe accumulation and the number of apoptotic chondrocytes within the injured xiphoid cartilage, which was confirmed by TUNEL assay. The results support that the apoptosis probes may serve as a powerful tool to monitor the extent of mechanical force-induced cartilage injury in vivo.
Collapse
|
10
|
Yang HJ, Ju F, Guo XX, Ma SP, Wang L, Cheng BF, Zhuang RJ, Zhang BB, Shi X, Feng ZW, Wang M. RNA-binding protein RBM3 prevents NO-induced apoptosis in human neuroblastoma cells by modulating p38 signaling and miR-143. Sci Rep 2017; 7:41738. [PMID: 28134320 PMCID: PMC5278414 DOI: 10.1038/srep41738] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/28/2016] [Indexed: 01/25/2023] Open
Abstract
Nitric oxide (NO)-induced apoptosis in neurons is an important cause of neurodegenerative disease in humans. The cold-inducible protein RBM3 mediates the protective effects of cooling on apoptosis induced by various insults. However, whether RBM3 protects neural cells from NO-induced apoptosis is unclear. This study aimed to investigate the neuroprotective effect of RBM3 on NO-induced apoptosis in human SH-SY5Y neuroblastoma cells. Firstly, we demonstrated that mild hypothermia (32 °C) induces RBM3 expression and confers a potent neuroprotective effect on NO-induced apoptosis, which was substantially diminished when RBM3 was silenced by siRNA. Moreover, overexpression of RBM3 exhibited a strong protective effect against NO-induced apoptosis. Signaling pathway screening demonstrated that only p38 inhibition by RBM3 provided neuroprotective effect, although RBM3 overexpression could affect the activation of p38, JNK, ERK, and AKT signaling in response to NO stimuli. Notably, RBM3 overexpression also blocked the activation of p38 signaling induced by transforming growth factor-β1. Furthermore, both RBM3 overexpression and mild hypothermia abolished the induction of miR-143 by NO, which was shown to mediate the cytotoxicity of NO in a p38-dependent way. These findings suggest that RBM3 protects neuroblastoma cells from NO-induced apoptosis by suppressing p38 signaling, which mediates apoptosis through miR-143 induction.
Collapse
Affiliation(s)
- Hai-Jie Yang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China.,Henan Key Lab of Biological Psychiatry, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Fei Ju
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Xin-Xin Guo
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuang-Ping Ma
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Lei Wang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Bin-Feng Cheng
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Rui-Juan Zhuang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Bin-Bin Zhang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiang Shi
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhi-Wei Feng
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Mian Wang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
11
|
Quan YY, Qin GQ, Huang H, Liu YH, Wang XP, Chen TS. Dominant roles of Fenton reaction in sodium nitroprusside-induced chondrocyte apoptosis. Free Radic Biol Med 2016; 94:135-44. [PMID: 26923801 DOI: 10.1016/j.freeradbiomed.2016.02.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 12/14/2015] [Accepted: 02/22/2016] [Indexed: 01/08/2023]
Abstract
Sodium nitroprusside (SNP) has been widely used as an exogenous nitric oxide (NO) donor to explore the molecular mechanism of NO-mediated chondrocyte apoptosis during the latest two decades. We have recently found that NO-independent ROS play a key role in SNP-induced apoptosis in rabbit chondrocytes. This study aims to investigate what kind of ROS and how the reliable ROS mediators mediate the SNP-induced apoptosis. Data shows that SNP and NO-exhausted SNP (SNPex) induced ROS production or cytotoxicity to identically degree. SNP induced a marked increase in iron ions, superoxide anion (O2(•-)), hydrogen peroxide (H2O2) and hydroxyl radical ((•)OH) level. H2O2 scavenger (CAT) and (•)OH scavenger (DMSO) significantly inhibited SNP-induced chondrocyte apoptosis. Iron ions chelator (DFO) entirely prevented SNP-induced chondrocyte apoptosis. In contrast, O2(•-) scavenger (SOD) and glutathione depletion agent (BSO) promoted SNP-induced cytotoxicity. K3[Fe(CN)6] exhibited no cytotoxicity, and H2O2 alone up to 250µM or iron ions alone up to 90µM is non-cytotoxic to chondrocytes. Combination of 25µM FeSO4 and 100µM H2O2 in the presence of BSO induced chondrocyte death similar to SNP treatment. Fetal bovine serum (FBS) enhanced iron ions release from SNP and the cytotoxicity of SNP. Our data shows that the extracellular Fenton reaction between iron ions released from SNP and H2O2 induced by SNP plays a key role in SNP-induced chondrocyte apoptosis. Overall, our results indicate that the potential of SNP to increase iron ions and ROS should be especially considered for some biological functions and, possibly, also for clinical applications of this drug.
Collapse
Affiliation(s)
- Ying-Yao Quan
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Gui-Qi Qin
- MOE Key Laboratory of Laser Life Science & College of Life Science, South China Normal University, Guangzhou, China
| | - Hao Huang
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yu-Hong Liu
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiao-Ping Wang
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Tong-Sheng Chen
- MOE Key Laboratory of Laser Life Science & College of Life Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
12
|
HE BIN, TAO HAIYING, LIU SHIQING, WEI AILIN, PAN FENG, CHEN REN, LI XIAOHAI. Carboxymethylated chitosan protects rat chondrocytes from NO-induced apoptosis via inhibition of the p38/MAPK signaling pathway. Mol Med Rep 2016; 13:2151-8. [DOI: 10.3892/mmr.2016.4772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 12/03/2015] [Indexed: 11/05/2022] Open
|
13
|
Combination of ADMSCs and chondrocytes reduces hypertrophy and improves the functional properties of osteoarthritic cartilage. Osteoarthritis Cartilage 2014; 22:1894-901. [PMID: 25128628 DOI: 10.1016/j.joca.2014.07.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 07/20/2014] [Accepted: 07/29/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To evaluate the therapeutic efficacy of Adipose derived MSCs (ADMSCs) in combination with chondrocytes in counteracting oxidative stress in chondrocytes in vitro and in rat model of osteoarthritis (OA). METHOD Cultured chondrocytes were exposed to oxidative stress with 200 μM Hydrogen peroxide (H2O2), followed by co-culture with ADMSCs or chondrocytes or combination of both cell types in a transwell culture system for 36 h. The cytoprotective effect was assessed by immunocytochemistry and gene expression analysis. In vivo study evaluated therapeutic effect of the above mentioned three treatments after transplantation in OA rats. RESULTS The Combination of ADMSCs + Chondrocytes decreased the extent of oxidative stress-induced damage of chondrocytes. Enhanced expression level of Acan and Collagen type-II alpha (Col2a1) with a correspondingly decreased expression of Collagen type-I alpha (Col1a1) and Matrix metallopeptidase 13 (Mmp13) was maximally observed in this group. Moreover, reduced count of annexin-V positive cells, Caspase (Casp3) gene expression and Lactate dehydrogenase (LDH) release with concomitantly enhanced viability and expression of proliferating cell nuclear antigen (PCNA) gene was observed. In vivo study showed that homing of cells and proteoglycan contents of knee joints were significantly better in ADMSCs + Chondrocytes transplanted rats. Increased expression of Acan and Col2a1 along with decreased expression of Col1a1 and Mmp13 indicated formation of hyaline cartilage in this group. These rats also demonstrated significantly reduced expression of Casp3 while increased expression of PCNA genes than the other cell transplanted groups. CONCLUSIONS Our results demonstrated that a combination of ADMSCs and chondrocytes may be a more effective therapeutic strategy against OA than the use of ADMSCs or chondrocytes separately.
Collapse
|
14
|
Yu SM, Kim SJ. Withaferin A-caused production of intracellular reactive oxygen species modulates apoptosis via PI3K/Akt and JNKinase in rabbit articular chondrocytes. J Korean Med Sci 2014; 29:1042-53. [PMID: 25120312 PMCID: PMC4129194 DOI: 10.3346/jkms.2014.29.8.1042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/12/2014] [Indexed: 11/20/2022] Open
Abstract
Withaferin A (WFA) is known as a constituent of Ayurvedic medicinal plant, Withania somnifera, and has been used for thousands of years. Although WFA has been used for the treatment of osteoarthritis (OA) and has a wide range of biochemical and pharmacologic activities, there are no findings suggesting its properties on chondrocytes or cartilage. The aim of the present study is to investigate the effects of WFA on apoptosis with focus on generation of intracellular reactive oxygen species (ROS). Here we showed that WFA significantly increased the generation of intracellular ROS in a dose-dependent manner. We also determined that WFA markedly leads to apoptosis as evidenced by accumulation of p53 by Western blot analysis. N-Acetyl-L-Cystein (NAC), an antioxidant, prevented WFA-caused expression of p53 and inhibited apoptosis of chondrocytes. We also found that WFA causes the activation of PI3K/Akt and JNKinase. Inhibition of PI3K/Akt and JNKinase with LY294002 (LY)/triciribine (TB) or SP600125 (SP) in WFA-treated cells reduced accumulation of p53 and inhibited fragmented DNA. Our findings suggested that apoptosis caused by WFA-induced intracellular ROS generation is regulated through PI3K/Akt and JNKinase in rabbit articular chondrocytes.
Collapse
Affiliation(s)
- Seon-Mi Yu
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| | - Song-Ja Kim
- Department of Biological Sciences, Kongju National University, Gongju, Korea
| |
Collapse
|
15
|
Dai Y, Zhang W, Zhou X, Shi J. Inhibition of c-Jun N-terminal kinase ameliorates early brain injury after subarachnoid hemorrhage through inhibition of a Nur77 dependent apoptosis pathway. Neurochem Res 2014; 39:1603-11. [PMID: 24928238 DOI: 10.1007/s11064-014-1355-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/26/2014] [Accepted: 06/03/2014] [Indexed: 12/21/2022]
Abstract
Nur77 is a potent pro-apoptotic member of the orphan nuclear receptor superfamily. Our previous study revealed Nur77-mediated apoptotic also involved in early brain injury (EBI) after experimental subarachnoid hemorrhage (SAH). Previous researches show that c-Jun N-terminal kinase (JNK) positively regulates Nur77 nuclear export and apoptosis by phosphorylating Nur77. To determine whether activation of JNK is directly associated with Nur77 dependent apoptosis pathway. We hypothesized that SP600125, a chemical inhibitor of JNK, may effectively ameliorate EBI by inhibiting Nur77 phosphorylation and its transcriptional activity. Hence, in this study was designed to explore the neuroprotective effects of SP600125 in EBI after SAH. Adult male SD rats were randomly assigned to four groups: control; SAH + DMSO; SAH + SP10 and SAH + SP30, a dose of 10 and 30 mg/kg SP600125 was directly administered intraperitoneally 30 min before and 2 h after SAH induction. SP600125 markedly decreased expressions of p-JNK, p-Nur77, Bcl-2, cyto C, caspase-3 and inhibited apoptosis. Improvement of neurological deficit, alleviation of brain edema and amelioration of EBI were obtained after treatment of SP600125. Transferase-mediated dUTP nick end labeling-positive cells were reduced markedly in brain cortex by SP600125. Our studies indicate JNK plays important roles in Nur77 activation. These findings strongly support the hypothesis that SP600125 treatment can ameliorate EBI after experimentally induced SAH by inhibiting a Nur77-dependent apoptotic pathway.
Collapse
Affiliation(s)
- Yuxiang Dai
- Department of Neurosurgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | | | | | | |
Collapse
|
16
|
Lee SR, Lee SJ, Kim SH, Ko KS, Rhee BD, Xu Z, Kim N, Han J. NecroX-5 suppresses sodium nitroprusside-induced cardiac cell death through inhibition of JNK and caspase-3 activation. Cell Biol Int 2014; 38:702-7. [PMID: 24446382 DOI: 10.1002/cbin.10242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/07/2014] [Indexed: 12/12/2022]
Abstract
Although sodium nitroprusside (SNP) is an effective hypotensive drug and is often used in pediatric intensive care units and to treat acute heart failure, clinical application of SNP is limited by its cardiotoxicity. NecroX-5 (NX-5) was recently developed and has the capacity to inhibit necrotic cell death. No current literature addresses whether NX-5 suppresses SNP-induced cell death or its mechanism of action. We have investigated the protective role of NX-5 against SNP-induced cell death in cardiomyocyte-like H9c2 cells. SNP treatment induced severe cell death, possibly through phosphorylation of stress-activated protein kinase/c-Jun NH₂-terminal kinase (JNK) and activation of the apoptotic signaling pathway, including downregulation of Bcl-2 and cleavage of caspase-3. However, NX-5 suppresses SNP-induced cell death through inhibition of JNK activation and suppression of both downregulation of Bcl-2 protein expression and caspase-3 cleavage. These findings will provide insights and facilitate development of antidotes to SNP toxicity in cardiac cells.
Collapse
Affiliation(s)
- Sung Ryul Lee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, 633-165 Gaegeum-dong Busanjin-gu, Busan, 614 735, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lee SR, Kwak JH, Noh SJ, Pronto JR, Ko KS, Rhee BD, Xu Z, Kim N, Han J. Kobophenol A Inhibits Sodium Nitroprusside-Induced Cardiac H9c2 Cell Death through Suppressing Activation of JNK and Preserving Mitochondrial Anti-apoptotic Bcl-2 and Mcl-1. Chem Pharm Bull (Tokyo) 2014; 62:713-8. [DOI: 10.1248/cpb.c13-00995] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Sung Ryul Lee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Department of Health Sciences and Technology, Inje University
| | | | - Su Jin Noh
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Department of Health Sciences and Technology, Inje University
| | - Julius Ryan Pronto
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Department of Health Sciences and Technology, Inje University
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Department of Health Sciences and Technology, Inje University
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Department of Health Sciences and Technology, Inje University
| | - Zhelong Xu
- Department of Physiology & Pathophysiology, Medical University
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Department of Health Sciences and Technology, Inje University
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Department of Health Sciences and Technology, Inje University
| |
Collapse
|
18
|
Chen X, Deng A, Zhou H, Gu J. Neuroprotective effect of 2-(4-methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-D-pyranoside against sodium nitroprusside-induced neurotoxicity in HT22 cells. Mol Cell Biochem 2013; 383:149-59. [PMID: 23873333 DOI: 10.1007/s11010-013-1763-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/10/2013] [Indexed: 01/17/2023]
Abstract
2-(4-Methoxyphenyl) ethyl-2-acetamido-2-deoxy-β-D-pyranoside (GlcNAc-Sal), the salidroside analog was synthesized and shown to inhibit hypoglycemia and serum limitation induced apoptosis in PC12 cells. This study investigated the protective effects of GlcNAc-Sal on sodium nitroprusside (SNP)-induced cytotoxicity in HT22 cells. Cell viability tests and Hoechst 33342 staining comfirmed that GlcNAc-Sal pretreatment attenuated SNP-stimulated apoptotic cell death in HT22 cells in a concentration-dependent manner. The measurements of reactive oxygen species (ROS), nitric oxide (NO) production and apoptosis-related gene and protein expression suggest that the protection of GlcNAc-Sal, shown in this study, might be mediated by inhibiting intracellular ROS and NO production, and regulating apoptosis-related gene and protein expression during SNP stimulation. Perhaps, this study might contribute to the development of GlcNAc-Sal as an agent for preventing and/or treating a variety of NO-induced brain diseases.
Collapse
Affiliation(s)
- Xia Chen
- Department of Pharmacology, Medical School, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China,
| | | | | | | |
Collapse
|
19
|
Vitamin E protects chondrocytes against hydrogen peroxide-induced oxidative stress in vitro. Inflamm Res 2013; 62:781-9. [DOI: 10.1007/s00011-013-0635-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 05/08/2013] [Indexed: 02/05/2023] Open
|