1
|
Duan F, Xiao D, Wang J, Li R, Si X, Lu W. In vivo and In vitro Crosstalk Among CBD, Aβ, and endocannabinoid system enzymes and receptors. Eur J Pharmacol 2025; 1000:177720. [PMID: 40350019 DOI: 10.1016/j.ejphar.2025.177720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Cannabidiol (CBD), a non-psychotropic compound derived from Cannabis sativa, has garnered attention as a potential therapeutic agent for various neurodegenerative diseases, including Alzheimer's disease (AD). Despite growing interest, additional research is required to clarify the specific mechanisms by which CBD influences the pathological accumulation of β-amyloid (Aβ) associated with AD. Moreover, the interactions between CBD and the endocannabinoid system (ECS), both in the presence and absence of Aβ expression, remain a subject of active investigation. Elucidating these mechanisms may provide valuable insights for advancing both our understanding and the development of targeted interventions in neurodegenerative disease management. Using a multifaceted approach that integrates pharmacological interventions, immunofluorescence imaging, flow cytometry, and biochemical assays, we examined the effects of CBD on Aβ40 and Aβ42. Additionally, we analyzed the modulation of cannabinoid receptor 1(CB1 receptor) and fatty acid amide hydrolase (FAAH) in the presence or absence of Aβ expression, uncovering the intricate regulatory mechanisms of CBD. Our findings indicate a nuanced response to CBD; while it may produce side effects in non-pathological cells, it demonstrates an ability to induce autophagy and apoptosis in Aβ-expressing cells via the activation of the Microtubule-associated protein 1 light chain 3 B(LC3B) and Caspase-3 pathways. Furthermore, our investigation into faah-1 involvement highlighted its role in alleviating pharyngeal dysfunction and counteracting weight loss in Aβ-expressing Caenorhabditis elegans(C. elegans) strains. These insights advance our understanding of CBD's therapeutic potential in addressing neurodegenerative pathologies.
Collapse
Affiliation(s)
- Fangyuan Duan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, 150001, PR China; School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Dan Xiao
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, PR China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan, 450007, PR China
| | - Jiayu Wang
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, 150001, PR China; School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Runze Li
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Xiaoyue Si
- School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Weihong Lu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, 150001, PR China; School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, PR China.
| |
Collapse
|
2
|
Ueno H, Takahashi Y, Mori S, Kitano E, Murakami S, Wani K, Miyazaki T, Matsumoto Y, Okamoto M, Ishihara T. Age-related behavioural abnormalities in C57BL/6.KOR- Apoe shl mice. Transl Neurosci 2025; 16:20220363. [PMID: 40026711 PMCID: PMC11868718 DOI: 10.1515/tnsci-2022-0363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 12/13/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
Spontaneously hyperlipidaemic (Apoeshl) mice were discovered in 1999 as mice lacking apolipoprotein E (ApoE) owing to a mutation in the Apoe gene. However, age-related behavioural changes in commercially available Apoeshl mice have not yet been clarified. The behavioural abnormalities of ApoE-deficient mice, which are genetically modified mice artificially deficient in ApoE, have been investigated in detail, and it has been reported that they can serve as a model of Alzheimer's disease (AD). To understand whether Apoeshl mice can also serve as a murine model of AD, it is necessary to investigate age-related behavioural abnormalities in Apoeshl mice. In this study, we conducted a series of behavioural experiments on 7- and 11-month-old Apoeshl mice to investigate the behavioural abnormalities associated with ageing in Apoeshl mice. In this study, 7-month-old Apoeshl mice showed decreased body weight and grip strength compared to age-matched wild-type mice. In the open field test, 7-month-old Apoeshl mice showed increased anxiety-like behaviour compared to wild-type mice, whereas 11-month-old Apoeshl mice showed decreased anxiety-like behaviour. Moreover, Apoeshl mice aged 7 and 11 months had increased serum cholesterol levels. These results indicate that the behaviour of Apoeshl mice changes with age. However, 11-month-old Apoeshl mice did not show a decline in cognitive function or memory ability similar to murine models of AD. Our findings indicate that Apoeshl mice can be used to investigate the function of ApoE in the central nervous system.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare,
Okayama, 701-0193, Japan
| | - Yu Takahashi
- Department of Psychiatry, Kawasaki Medical School,
Kurashiki, 701-0192, Japan
| | - Sachiko Mori
- Department of Psychiatry, Kawasaki Medical School,
Kurashiki, 701-0192, Japan
| | - Eriko Kitano
- Department of Psychiatry, Kawasaki Medical School,
Kurashiki, 701-0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School,
Kurashiki, 701-0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School,
Kurashiki, 701-0192, Japan
| | - Tetsuji Miyazaki
- Department of Psychiatry, Kawasaki Medical School,
Kurashiki, 701-0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University,
Okayama, 700-8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University,
Okayama, 700-8558, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School,
Kurashiki, 701-0192, Japan
| |
Collapse
|
3
|
Wang X, Zhang H, Liu Y, Xu Y, Yang B, Li H, Chen L. An overview on synthetic and biological activities of cannabidiol (CBD) and its derivatives. Bioorg Chem 2023; 140:106810. [PMID: 37659147 DOI: 10.1016/j.bioorg.2023.106810] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
(-)-Cannabidiol is a class of non-psychoactive plant cannabinoids derived from cannabis plants. Currently, Epidiolex (Cannabidiol) has been approved by the FDA for the treatment of two rare and severe forms of epilepsy related diseases, namely Lennox-Gastaut syndrome (LGS) and Dravet (DS). In addition, Cannabidiol and its structural analogues have received increasing attention due to their potential therapeutic effects such as neuroprotection, anti-epilepsy, anti-inflammation, anti-anxiety, and anti-cancer. Based on literature review, no comprehensive reviews on the synthesis of Cannabidiol and its derivatives have been found in recent years. Therefore, this article summarizes the published synthesis methods of Cannabidiol and the synthesis routes of Cannabidiol derivatives, and introduces the biological activities of some Cannabidiol analogues that have been studied extensively and have significant activities.
Collapse
Affiliation(s)
- Xiuli Wang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huanbang Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Heilongjiang 150006, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Heilongjiang 150006, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
4
|
Ueno H, Takahashi Y, Murakami S, Wani K, Miyazaki T, Matsumoto Y, Okamoto M, Ishihara T. Comprehensive behavioral study of C57BL/6.KOR-ApoE shl mice. Transl Neurosci 2023; 14:20220284. [PMID: 37396111 PMCID: PMC10314129 DOI: 10.1515/tnsci-2022-0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 07/04/2023] Open
Abstract
Background Apolipoprotein E (ApoE) is associated with Alzheimer's disease (AD) and cognitive dysfunction in elderly individuals. There have been extensive studies on behavioral abnormalities in ApoE-deficient (Apoeshl) mice, which have been described as AD mouse models. Spontaneously hyperlipidemic mice were discovered in 1999 as ApoE-deficient mice due to ApoE gene mutations. However, behavioral abnormalities in commercially available Apoeshl mice remain unclear. Accordingly, we aimed to investigate the behavioral abnormalities of Apoeshl mice. Results Apoeshl mice showed decreased motor skill learning and increased anxiety-like behavior toward heights. Apoeshl mice did not show abnormal behavior in the Y-maze test, open-field test, light/dark transition test, and passive avoidance test. Conclusion Our findings suggest the utility of Apoeshl mice in investigating the function of ApoE in the central nervous system.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, 288, Matsushima, Kurashiki, Okayama, 701-0193, Japan
| | - Yu Takahashi
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Tetsuji Miyazaki
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| |
Collapse
|
5
|
Morales P, Jagerovic N. Synthetic and Natural Derivatives of Cannabidiol. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1297:11-25. [PMID: 33537934 DOI: 10.1007/978-3-030-61663-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The non-psychoactive component of Cannabis Sativa, cannabidiol (CBD), has centered the attention of a large body of research in the last years. Recent clinical trials have led to the FDA approval of CBD for the treatment of children with drug-resistant epilepsy. Even though it is not yet in clinical phases, its use in sleep-wake pathological alterations has been widely demonstrated.Despite the outstanding current knowledge on CBD therapeutic effects in numerous in vitro and in vivo disease models, diverse questions still arise from its molecular pharmacology. CBD has been shown to modulate a wide variety of targets including the cannabinoid receptors, orphan GPCRs such as GPR55 and GPR18, serotonin, adenosine, and opioid receptors as well as ligand-gated ion channels among others. Its pharmacology is rather puzzling and needs to be further explored in the disease context.Also, the metabolism and interactions of this phytocannabinoid with other commercialized drugs need to be further considered to elucidate its clinical potential for the treatment of specific pathologies.Besides CBD, natural and synthetic derivatives of this chemotype have also been reported exhibiting diverse functional profiles and providing a deeper understanding of the potential of this scaffold.In this chapter, we analyze the knowledge gained so far on CBD and its analogs specially focusing on its molecular targets and metabolic implications. Phytogenic and synthetic CBD derivatives may provide novel approaches to improve the therapeutic prospects offered by this promising chemotype.
Collapse
|
6
|
Murphy T, Le Foll B. Targeting the Endocannabinoid CB1 Receptor to Treat Body Weight Disorders: A Preclinical and Clinical Review of the Therapeutic Potential of Past and Present CB1 Drugs. Biomolecules 2020; 10:biom10060855. [PMID: 32512776 PMCID: PMC7356944 DOI: 10.3390/biom10060855] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity rates are increasing worldwide and there is a need for novel therapeutic treatment options. The endocannabinoid system has been linked to homeostatic processes, including metabolism, food intake, and the regulation of body weight. Rimonabant, an inverse agonist for the cannabinoid CB1 receptor, was effective at producing weight loss in obese subjects. However, due to adverse psychiatric side effects, rimonabant was removed from the market. More recently, we reported an inverse relationship between cannabis use and BMI, which has now been duplicated by several groups. As those results may appear contradictory, we review here preclinical and clinical studies that have studied the impact on body weight of various cannabinoid CB1 drugs. Notably, we will review the impact of CB1 inverse agonists, agonists, partial agonists, and neutral antagonists. Those findings clearly point out the cannabinoid CB1 as a potential effective target for the treatment of obesity. Recent preclinical studies suggest that ligands targeting the CB1 may retain the therapeutic potential of rimonabant without the negative side effect profile. Such approaches should be tested in clinical trials for validation.
Collapse
Affiliation(s)
- Thomas Murphy
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, ON M5S 2S1, Canada;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, ON M5S 2S1, Canada;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Acute Care Program, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5S 2S1, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G 1V7, Canada
- Department of Psychiatry, Division of Brain and Therapeutics, University of Toronto, Toronto, ON M5T 1R8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: ; Tel.: +1-416-535-8501
| |
Collapse
|
7
|
Dawson DD, Martin RW. Investigation of Chocolate Matrix Interference on Cannabinoid Analytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5699-5706. [PMID: 32357297 DOI: 10.1021/acs.jafc.0c01161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The first known findings of chocolate matrix interference on cannabinoid analytes is reported. Stock solutions of four biogenic cannabinoids (Δ9-tetrahydrocannabinol, cannabidiol, cannabinol, and cannabigerol) and one synthetic cannabinoid (cannabidiol dimethyl ether) are subjected to milk chocolate, dark chocolate, and cocoa powder. A clear trend of matrix interference is observed, which correlates to several chemical factors. The amount of chocolate present is directly proportional to the degree of matrix interference, which yields lower percent recovery rates for the cannabinoid analyte. Structural features on the cannabinoid analytes are shown to affect matrix interference, because cannabinoids with fewer phenolic -OH groups suffer from increased signal suppression. Additionally, aromatization of the p-menthyl moiety appears to correlate with enhanced matrix effects from chocolate products high in cocoa solids. These findings represent the first known documentation of chocolate matrix interference in cannabinoid analysis, which potentially has broad implications for complex matrix testing in the legal Cannabis industry.
Collapse
Affiliation(s)
- David D Dawson
- CW Analytical, 851 81st Avenue, Suite D, Oakland, California 94621, United States
| | - Robert W Martin
- CW Analytical, 851 81st Avenue, Suite D, Oakland, California 94621, United States
| |
Collapse
|
8
|
Abrantes De Lacerda Almeida T, Santos MV, Da Silva Lopes L, Goel G, Leonardo De Freitas R, De Medeiros P, Crippa JA, Machado HR. Intraperitoneal cannabidiol attenuates neonatal germinal matrix hemorrhage-induced neuroinflamation and perilesional apoptosis. Neurol Res 2019; 41:980-990. [PMID: 31378168 DOI: 10.1080/01616412.2019.1651487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background. As the survival of preterm infants has increased significantly, germinal matrix hemorrhage (GMH) has become an important public health issue. Nevertheless, treatment strategies for the direct neuronal injury are still scarce. The present study aims to analyze the neuroprotective properties of cannabidiol in germinal matrix hemorrhage. Methods. 112 Wistar rat pups (P7) were submitted to an experimental collagenase induced model of GMH. Inflammatory response and neuronal death were analyzed both at the perilesional area as at the distant ipsilateral CA1 hippocampal area. Immunohistochemistry for GFAP and caspase 3 was used. The ipsilateral free water content was assessed for stimation of cerebral edema, and neurodevelopment and neurofunctional tests were conducted. Results. Reduction of reactive astrocytosis was observed both in the perilesional area 24 hours and 14 days after the hemorrhage lesion (p < 0.001) and in the Stratum oriens of the ipsilateral hippocampal CA1 14 days after the hemorrhage lesion (p < 0.05) in the treated groups. Similarly, there was a reduction in the number of Caspase 3-positive astrocytes in the perilesional area in the treated groups 24 hours after the hemorrhage lesion (p < 0.001). Finally, we found a significant increase in the weight of the rats treated with cannabidiol. Conclusion. The treatment of GMH with cannabidiol significantly reduced the number of apoptotic cells and reactive astrocytes in the perilesional area and the ipsilateral hippocampus. In addition, this response was sustained 14 days after the hemorrhage. These results corroborate our hypothesis that cannabidiol is a potential neuroprotective agent in the treatment of germinal matrix hemorrhage.
Collapse
Affiliation(s)
- Timóteo Abrantes De Lacerda Almeida
- Pediatric neurosurgery division, Ribeirão Preto School of Medicine, University of São Paulo , Ribeirão Preto , Brazil.,Division of stereotactic and functional neurosurgery, University of British Columbia , Vancouver , Canada
| | - Marcelo Volpon Santos
- Pediatric neurosurgery division, Ribeirão Preto School of Medicine, University of São Paulo , Ribeirão Preto , Brazil
| | - Luiza Da Silva Lopes
- Department of surgery and anatomy, Ribeirão Preto School of Medicine, University of São Paulo , Ribeirão Preto , Brazil
| | - Gunjan Goel
- Division of neurosurgery, University of California San Diego , San Diego , USA
| | - Renato Leonardo De Freitas
- Laboratory of neuroscience for pain and emotions,Department of surgery and anatomy, Ribeirão Preto Medical School , University of São Paulo , Ribeirão Preto,Brazil
| | - Priscila De Medeiros
- Ribeirão Preto School of Pharmacology, University of São Paulo , Ribeirão Preto , Brazil
| | - José Alexandre Crippa
- Department of psychiatry, Ribeirão Preto School of Medicine, University of São Paulo , Ribeirão Preto , Brazil
| | - Hélio Rubens Machado
- Pediatric neurosurgery division, Ribeirão Preto School of Medicine, University of São Paulo , Ribeirão Preto , Brazil
| |
Collapse
|
9
|
Morales P, Reggio PH, Jagerovic N. An Overview on Medicinal Chemistry of Synthetic and Natural Derivatives of Cannabidiol. Front Pharmacol 2017; 8:422. [PMID: 28701957 PMCID: PMC5487438 DOI: 10.3389/fphar.2017.00422] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 06/14/2017] [Indexed: 12/12/2022] Open
Abstract
Cannabidiol (CBD) has been traditionally used in Cannabis-based preparation, however historically, it has received far less interest as a single drug than the other components of Cannabis. Currently, CBD generates considerable interest due to its beneficial neuroprotective, antiepileptic, anxiolytic, antipsychotic, and anti-inflammatory properties. Therefore, the CBD scaffold becomes of increasing interest for medicinal chemists. This review provides an overview of the chemical structure of natural and synthetic CBD derivatives including the molecular targets associated with these compounds. A clear identification of their biological targets has been shown to be still very challenging.
Collapse
Affiliation(s)
- Paula Morales
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, GreensboroNC, United States
| | - Patricia H. Reggio
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, GreensboroNC, United States
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Unidad Asociada I+D+i al Instituto de Química Médica/Universidad Rey Juan CarlosMadrid, Spain
| |
Collapse
|