1
|
Tamano H, Takiguchi M, Murakami D, Kawano Y, Fukuda T, Ikeda H, Akagi Y, Ikeura S, Takeda A. Blockage of metallothionein synthesis via adrenaline β receptor activation invalidates dehydroeffusol-mediated prevention of amyloid β 1-42 toxicity. Neurosci Lett 2024; 825:137708. [PMID: 38438068 DOI: 10.1016/j.neulet.2024.137708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/29/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
Dehydroeffusol, a major phenanthrene in Juncus effusus, protects neurodegeneration induced by intracellular Zn2+ ferried by extracellular amyloid β1-42 (Aβ1-42). Here we focused on adrenaline β receptor activation and the induction of metallothioneins (MTs), intracellular Zn2+-binding proteins to test the protective mechanism of dehydroeffusol. Isoproterenol, an agonist of adrenergic β receptors elevated the level of MTs in the dentate granule cell layer 1 day after intracerebroventricular (ICV) injection. When Aβ1-42 was injected 1 day after isoproterenol injection, pre-injection of isoproterenol protected Aβ1-42 toxicity via reducing the increase in intracellular Zn2+ after ICV injection of Aβ1-42. On the basis of the effect of increased MTs by isoproterenol, dehydroeffusol (15 mg/kg body weight) was orally administered to mice once a day for 2 days. On day later, dehydroeffusol elevated the level of MTs and prevented Aβ1-42 toxicity via reducing Aβ1-42-mediated increase in intracellular Zn2+. In contrast, propranolol, an antagonist of adrenergic β receptors reduced the level of MTs increased by dehydroeffusol, resulting in invalidating the preventive effect of dehydroeffusol on Aβ1-42 toxicity. The present study indicates that blockage of MT synthesis via adrenaline β receptor activation invalidates dehydroeffusol-mediated prevention of Aβ1-42 toxicity. It is likely that MT synthesis via adrenaline β receptor activation is beneficial to neuroprotection and that oral intake of dehydroeffusol preventively serves against the Aβ1-42 toxicity.
Collapse
Affiliation(s)
- Haruna Tamano
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; Shizuoka Tohto Medical College, 1949 Minamiema, Izunokuni, Shizuoka 410-2221, Japan
| | - Mako Takiguchi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Daichi Murakami
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuya Kawano
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | | | - Hiroki Ikeda
- Satoen CO., LTD., 1057 Ohhara, Aoi-ku Shizuoka 421-1392, Japan
| | - Yasuhito Akagi
- Hagihara & CO., LTD., 884 Nishibara, Nishiachicho, Kurashiki 710-8501, Japan
| | - Shinji Ikeura
- Hagihara & CO., LTD., 884 Nishibara, Nishiachicho, Kurashiki 710-8501, Japan
| | - Atsushi Takeda
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
2
|
Stecker MM, Srivastava A, Reiss AB. Amyloid-β Effects on Peripheral Nerve: A New Model System. Int J Mol Sci 2023; 24:14488. [PMID: 37833938 PMCID: PMC10572603 DOI: 10.3390/ijms241914488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Although there are many biochemical methods to measure amyloid-β (Aβ)42 concentration, one of the critical issues in the study of the effects of Aβ42 on the nervous system is a simple physiological measurement. The in vitro rat sciatic nerve model is employed and the nerve action potential (NAP) is quantified with different stimuli while exposed to different concentrations of Aβ42. Aβ42 predominantly reduces the NAP amplitude with minimal effects on other parameters except at low stimulus currents and short inter-stimulus intervals. The effects of Aβ42 are significantly concentration-dependent, with a maximum reduction in NAP amplitude at a concentration of 70 nM and smaller effects on the NAP amplitude at higher and lower concentrations. However, even physiologic concentrations in the range of 70 pM did reduce the NAP amplitude. The effects of Aβ42 became maximal 5-8 h after exposure and did not reverse during a 30 min washout period. The in vitro rat sciatic nerve model is sensitive to the effects of physiologic concentrations of Aβ42. These experiments suggest that the effect of Aβ42 is a very complex function of concentration that may be the result of amyloid-related changes in membrane properties or sodium channels.
Collapse
Affiliation(s)
| | - Ankita Srivastava
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Long Island, NY 11501, USA; (A.S.); (A.B.R.)
| | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Long Island, NY 11501, USA; (A.S.); (A.B.R.)
| |
Collapse
|
3
|
Ren Y, Savadlou A, Park S, Siska P, Epp JR, Sargin D. The impact of loneliness and social isolation on the development of cognitive decline and Alzheimer's Disease. Front Neuroendocrinol 2023; 69:101061. [PMID: 36758770 DOI: 10.1016/j.yfrne.2023.101061] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Alzheimer's Disease (AD) is the leading cause of dementia, observed at a higher incidence in women compared with men. Treatments aimed at improving pathology in AD remain ineffective to stop disease progression. This makes the detection of the early intervention strategies to reduce future disease risk extremely important. Isolation and loneliness have been identified among the major risk factors for AD. The increasing prevalence of both loneliness and AD emphasizes the urgent need to understand this association to inform treatment. Here we present a comprehensive review of both clinical and preclinical studies that investigated loneliness and social isolation as risk factors for AD. We discuss that understanding the mechanisms of how loneliness exacerbates cognitive impairment and AD with a focus on sex differences will shed the light for the underlying mechanisms regarding loneliness as a risk factor for AD and to develop effective prevention or treatment strategies.
Collapse
Affiliation(s)
- Yi Ren
- Department of Cell Biology and Anatomy, University of Calgary, Canada; Cumming School of Medicine, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada
| | - Aisouda Savadlou
- Department of Psychology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Soobin Park
- Department of Psychology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Paul Siska
- Department of Psychology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Jonathan R Epp
- Department of Cell Biology and Anatomy, University of Calgary, Canada; Cumming School of Medicine, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada
| | - Derya Sargin
- Department of Psychology, University of Calgary, Canada; Department of Physiology & Pharmacology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada.
| |
Collapse
|
4
|
Fluoxetine attenuates prepulse inhibition deficit induced by neonatal administration of MK-801 in mice. Neuroreport 2020; 31:1128-1133. [PMID: 32956214 PMCID: PMC7531495 DOI: 10.1097/wnr.0000000000001524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Increasing evidence supports schizophrenia may be a neurodevelopmental and neurodegenerative disorder. Fluoxetine, a selective serotonin reuptake inhibitor, has been reported to have neuroprotective effects and be effective in treating neurodegenerative disorders including schizophrenia. The objective of the present study was to evaluate the effect and underlying neuroprotective mechanism of fluoxetine on the sensorimotor gating deficit, a schizophrenia-like behavior in a neurodevelopmental schizophrenic mouse model induced by MK-801, an N-methyl-d-aspartate glutamate receptor antagonist. On postnatal day 7, mouse pups were treated with a total seven subcutaneous daily injections of MK-801 (1 mg/kg/day), followed by intraperitoneal injection of fluoxetine (5 or 10 mg/kg/day) starting on postnatal day 14 in the MK-801-injected mice for 4 weeks. The sensorimotor gating deficit in mice was measured by prepulse inhibition (PPI) behavioral test on postnatal day 43. After the behavioral test, the protein expression of brain-derived neurotrophic factor (BDNF) was measured by western blot or ELISA in the frontal cortex of mice. Our results showed fluoxetine attenuated PPI deficit and the decrease of cerebral BDNF expression in the MK-801-injected mice. These results suggest that fluoxetine can be used to treat sensorimotor gating deficit in a neurodevelopmental mouse model of schizophrenia, and the attenuating effect of fluoxetine on sensorimotor gating deficit may be related to fluoxetine’s neuroprotective effect targeting on the modulation of cerebral BDNF.
Collapse
|
5
|
Hsieh SW, Liu MW, Huang LC, Wu MN, Yang YH. The Impact of Angiotensin-Converting Enzyme Gene on Behavioral and Psychological Symptoms of Dementia in Alzheimer’s Disease. Curr Alzheimer Res 2020; 16:1269-1275. [DOI: 10.2174/1567205017666200103114550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/12/2019] [Accepted: 12/30/2019] [Indexed: 12/17/2022]
Abstract
Background:
The Angiotensin-Converting Enzyme (ACE) gene has drawn attention for its
possible role in regulating the degradation of β-amyloid (Aβ), yet its role in affecting the cognitive and
psychiatric symptoms of Alzheimer`s Disease (AD) patients has yet to be elucidated.
Objective:
This study aimed to investigate whether the ACE gene acts as a risk factor of Behavioral and
Psychological Symptoms of Dementia (BPSD) in the AD population.
Method:
The genotyping of ACE and Apolipoprotein E gene with allele ε4(APOEε4) was determined
among 360s clinically diagnosed AD patients. Symptoms and severity of BPSD were evaluated annually
via Neuropsychiatric Inventory (NPI).
Results:
At the base measurement of the first year of patient recruitment, there were no significant contributory
risk factors to NPI score. In the two-year follow-up, ACE insertion polymorphism showed a
significant risk (adjusted odds ratio=1.65, 95% CI=1.1- 2.5, p=0.019) of progression of NPI total score.
Conclusion:
ACE gene is involved in aggravating BPSD among AD patients.
Collapse
Affiliation(s)
- Sun-Wung Hsieh
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Wei Liu
- Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Ling-Chun Huang
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Ni Wu
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Han Yang
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Aggressive behavior and brain neuronal activation in sexually naïve male Mongolian gerbils. Behav Brain Res 2019; 378:112276. [PMID: 31589893 DOI: 10.1016/j.bbr.2019.112276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022]
Abstract
Aggressive behavior plays an important role in animal's survival and reproductive success. Although there has been growing interests in studying neural mechanisms underlying aggressive behavior using traditional laboratory animal models, little is known about mechanisms controlling naturally occurring aggression in sexually naïve animals. In the present study, we characterized aggressive behavior displayed by sexually naïve male Mongolian gerbils (Meriones unguiculatus) and examined the subsequent neuronal activation in the brain measured by Fos-immunoreactive (Fos-ir) staining. We found that resident males initiated attacks and showed intense levels of aggression (including chase, bite, offensive sideway, lunge and on-top) towards a conspecific male intruder. Furthermore, attacks from the resident males towards the intruder produced a nonrandom distribution of bites, with the most on the rump, flank, back and tail and few on the limbs, ventrum and head. In contrast, control males that were exposed to a woodblock (control for novelty) never attacked the woodblock and showed higher levels of object/environmental investigation. Male gerbils exposed to an intruder had significantly higher levels of Fos-ir density in the medial (MeA) and anterior cortical (ACo) subnuclei of the amygdala, principal nucleus (BSTpr) and interfascicular nucleus (BSTif) of the bed nucleus of the stria terminalis, ventrolateral subdivision of the ventromedial hypothalamus (VMHvl), and paraventricular nucleus of the hypothalamus (PVN), compared to control males. Together, our results indicate that sexually naïve, group housed male gerbils naturally display aggression towards conspecific strangers, and such aggressive behavior is associated with special patterns of neuronal activation in the brain.
Collapse
|
7
|
Scuteri D, Rombolà L, Morrone LA, Bagetta G, Sakurada S, Sakurada T, Tonin P, Corasaniti MT. Neuropharmacology of the Neuropsychiatric Symptoms of Dementia and Role of Pain: Essential Oil of Bergamot as a Novel Therapeutic Approach. Int J Mol Sci 2019; 20:E3327. [PMID: 31284573 PMCID: PMC6651821 DOI: 10.3390/ijms20133327] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/24/2019] [Accepted: 07/05/2019] [Indexed: 01/03/2023] Open
Abstract
Aging of the population makes of dementia a challenge for health systems worldwide. The cognitive disturbance is a serious but not the only issue in dementia; behavioral and psychological syndromes known as neuropsychiatric symptoms of dementia remarkably reduce the quality of life. The cluster of symptoms includes anxiety, depression, wandering, delusions, hallucinations, misidentifications, agitation and aggression. The pathophysiology of these symptoms implicates all the neurotransmitter systems, with a pivotal role for the glutamatergic neurotransmission. Imbalanced glutamatergic and GABAergic neurotransmissions, over-activation of the extrasynaptic N-methyl-D-aspartate (NMDA) receptors and alterations of the latter have been linked to the development of neuropsychiatric symptoms experienced by almost the entire demented population. Drugs with efficacy and safety for prevention or long term treatment of these disorders are not available yet. Aromatherapy provides the best evidence for positive outcomes in the control of agitation, the most resistant symptom. Demented patients often cannot verbalize pain, resulting in unrelieved symptoms and contributing to agitation. Bergamot essential oil provides extensive preclinical evidence of analgesic properties. Incidentally, the essential oil of bergamot induces anxyolitic-like effects devoid of sedation, typical of benzodiazepines, with a noteworthy advantage for demented patients. These data, together with the reported safety profile, form the rational basis for bergamot as a neurotherapeutic to be trialed for the control of behavioral and psychological symptoms of dementia.
Collapse
Affiliation(s)
- Damiana Scuteri
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, 87036 Rende, Italy
| | - Laura Rombolà
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, 87036 Rende, Italy
| | - Luigi Antonio Morrone
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, 87036 Rende, Italy
| | - Giacinto Bagetta
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, 87036 Rende, Italy.
| | - Shinobu Sakurada
- Department of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Tsukasa Sakurada
- Daiichi College of Pharmaceutical Sciences-First Department of Pharmacology Fukuoka, Fukuoka 815-8511, Japan
| | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, 88900 Crotone, Italy
| | | |
Collapse
|
8
|
Hirokawa Y, Fujimoto A, Ichikawa N, Sato K, Tanaka T, Enoki H, Otsuki Y, Okanishi T. Temporal Lobe Cavernous Malformation Caused Epileptic Amnesic Episodes and Mild Cognitive Impairment. Front Neurol 2019; 10:620. [PMID: 31249550 PMCID: PMC6582224 DOI: 10.3389/fneur.2019.00620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/28/2019] [Indexed: 02/03/2023] Open
Abstract
Neuropathological features in Alzheimer's disease (AD) are amyloid β (Aβ) deposits and neurofibrillary changes. AD is characterized by memory impairment and cognitive dysfunction, with some reports associating these impairments with hyperexcitability caused by Aβ in the medial temporal lobe. Epileptic seizures are known to be common in AD. We encountered a 65-year-old patient with cavernous malformation (CM) in the right temporal lobe who exhibited epileptic amnesia (EA) and AD-like symptoms. Scalp electroencephalography (EEG), including long-term video-EEG, showed no interictal discharges, but intraoperative subdural electrode (SE) recording from the right parahippocampal area showed frequent epileptiform discharges. Neuropathologically, senile plaques were found in the surrounding normal cortex of the CM. Postoperatively, the patient has remained free of EA and AD-like symptoms since total removal of the CM. This is the first surgical case report to confirm temporal lobe hyperexcitability associated with EA and AD-like symptoms.
Collapse
Affiliation(s)
- Yusuke Hirokawa
- Department of Neurosurgery, Seirei-Hamamatsu General Hospital, Hamamatsu, Japan
| | - Ayataka Fujimoto
- Comprehensive Epilepsy Center, Seirei-Hamamatsu General Hospital, Hamamatsu, Japan
| | - Naoki Ichikawa
- Comprehensive Epilepsy Center, Seirei-Hamamatsu General Hospital, Hamamatsu, Japan
| | - Keishiro Sato
- Comprehensive Epilepsy Center, Seirei-Hamamatsu General Hospital, Hamamatsu, Japan
| | - Tokutaro Tanaka
- Department of Neurosurgery, Seirei-Hamamatsu General Hospital, Hamamatsu, Japan
| | - Hideo Enoki
- Comprehensive Epilepsy Center, Seirei-Hamamatsu General Hospital, Hamamatsu, Japan
| | - Yoshiro Otsuki
- Department of Pathology, Seirei-Hamamatsu General Hospital, Hamamatsu, Japan
| | - Tohru Okanishi
- Comprehensive Epilepsy Center, Seirei-Hamamatsu General Hospital, Hamamatsu, Japan
| |
Collapse
|
9
|
Park H, Kang S, Nam E, Suh YH, Chang KA. The Protective Effects of PSM-04 Against Beta Amyloid-Induced Neurotoxicity in Primary Cortical Neurons and an Animal Model of Alzheimer's Disease. Front Pharmacol 2019; 10:2. [PMID: 30733674 PMCID: PMC6353859 DOI: 10.3389/fphar.2019.00002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/04/2019] [Indexed: 01/15/2023] Open
Abstract
Polygala tenuifolia Willdenow is a herb known for its therapeutic effects in insomnia, depression, disorientation, and memory impairment. In Alzheimer's disease (AD) animal model, there has been no report on the effects of memory and cognitive impairment. PSM-04, an extract from the root of P. tenuifolia Willdenow, was developed with improved bioabsorption. The present study aimed to investigate the neuroprotective effects of PSM-04 on AD and reveal the possible molecular mechanism. The neuroprotective effect of PSM-04 in primary cortical neurons treated with L-glutamate, oligomeric Aβ, or H2O2. PSM-04 exhibited significant neuroprotective effects against neurotoxicity induced by L-glutamate or oligomeric Aβ was studied. PSM-04 exhibited significant neuroprotective effects against neurotoxicity induced by L-glutamate or oligomeric Aβ. Oxidative stress induced by ROS was monitored using the DCF-DA assay, and apoptosis was assessed using the TUNEL assay in primary cortical neurons treated with H2O2 or oligomeric Aβ. PSM-04 also decreased oxidative stress induced by H2O2 and apoptotic cell death induced by oligomeric Aβ. We evaluated the therapeutic effect of PSM-04 in 5xFAD (Tg) mice, an animal model for AD. PSM-04 was orally administered to 4-month-old 5xFAD mice for 2 months. To confirm the degree of cognitive impairment, a novel object recognition task was performed. The treatment with PSM-04 significantly alleviated cognitive impairments in Tg mice. In addition, amyloid plaques and gliosis decreased significantly in the brains of PSM-04-administered Tg mice compared with Tg-vehicle mice. Furthermore, the administration of PSM-04 increased the superoxide dismutase-2 (SOD-2) protein level in hippocampal brain tissues. Our results indicated that PSM-04 showed therapeutic effects by alleviating cognitive impairment and decreasing amyloid plaque deposition in Tg mice. Therefore, PSM-04 was considered as a potential pharmacological agent for neuroprotective effects in neurodegenerative diseases, including AD.
Collapse
Affiliation(s)
- Hyunjun Park
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, South Korea
- Neuroscience Research Institute, Gachon University, Incheon, South Korea
| | - Shinwoo Kang
- Neuroscience Research Institute, Gachon University, Incheon, South Korea
- Department of Pharmacology, Gachon University of Medicine and Science, Incheon, South Korea
| | - Eunjoo Nam
- Neuroscience Research Institute, Gachon University, Incheon, South Korea
- Department of Pharmacology, Gachon University of Medicine and Science, Incheon, South Korea
| | - Yoo-Hun Suh
- Neuroscience Research Institute, Gachon University, Incheon, South Korea
| | - Keun-A Chang
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, South Korea
- Neuroscience Research Institute, Gachon University, Incheon, South Korea
- Department of Pharmacology, Gachon University of Medicine and Science, Incheon, South Korea
| |
Collapse
|
10
|
Mechanism underlying NMDA blockade-induced inhibition of aggression in post-weaning socially isolated mice. Neuropharmacology 2018; 143:95-105. [DOI: 10.1016/j.neuropharm.2018.09.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/22/2018] [Accepted: 09/11/2018] [Indexed: 11/18/2022]
|
11
|
Tamano H, Morioka H, Iwaki H, Suzuki H, Sato Y, Takeda A. Yokukansan, a Herbal Medicine in Japan, Buffers Social Crowding Stress via Ameliorating Glucocorticoid Secretion Response to Vasopressin. Biol Pharm Bull 2018; 41:920-924. [DOI: 10.1248/bpb.b18-00052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Hiroki Morioka
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Haruka Iwaki
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Hiroki Suzuki
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Yuichi Sato
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
12
|
Zhang Q, Yang C, Liu T, Liu L, Li F, Cai Y, Lv K, Li X, Gao J, Sun D, Xu H, Yang Q, Fan X. Citalopram restores short-term memory deficit and non-cognitive behaviors in APP/PS1 mice while halting the advance of Alzheimer's disease-like pathology. Neuropharmacology 2018; 131:475-486. [PMID: 29241655 DOI: 10.1016/j.neuropharm.2017.12.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/20/2017] [Accepted: 12/10/2017] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. In addition to cognitive impairments, deficits in non-cognitive behaviors are also common neurological sequelae in AD. Here, we show that complex behavioral deficits in 7-month-old APPswe/PSEN1dE9 (APP/PS1) mice include impairments in object recognition, deficient social interaction, increased depression and buried marbles. Citalopram, one of the selective serotonin reuptake inhibitors (SSRIs), ameliorated the amyloid deposition in AD patients and transgenic animal models. After treatment for 4 weeks, citalopram rescued the deficits in short-term memory, sociability and depression in these mice. Further immunohistochemical analysis showed chronic citalopram treatment significantly attenuated β-amyloid deposition and microglial activation in the brains of APP/PS1 mice as demonstrated previously. Parvalbumin (PV) interneurons, which are the primary cellular subtype of GABAergic neurons and considered indispensable for short-term memory and social interaction, also contributed to the progress of depression. Additionally, we found the citalopram could significantly increase the PV-positive neurons in the cortex of APP/PS1 mice without alteration in the hippocampus, which might contribute to the improvement of behavioral performance. Our findings suggest that citalopram might be a potential candidate for the early treatment of AD.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing 400038, PR China; Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Chen Yang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing 400038, PR China
| | - Tianyao Liu
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing 400038, PR China
| | - Liang Liu
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing 400038, PR China; Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Fen Li
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing 400038, PR China
| | - Yulong Cai
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing 400038, PR China
| | - Keyi Lv
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing 400038, PR China
| | - Xin Li
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing 400038, PR China
| | - Junwei Gao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing 400038, PR China
| | - Dayu Sun
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | - Qingwu Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
13
|
Justice NJ. The relationship between stress and Alzheimer's disease. Neurobiol Stress 2018; 8:127-133. [PMID: 29888308 PMCID: PMC5991350 DOI: 10.1016/j.ynstr.2018.04.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/03/2018] [Accepted: 04/19/2018] [Indexed: 12/04/2022] Open
Abstract
Stress is critically involved in the development and progression of disease. From the stress of undergoing treatments to facing your own mortality, the physiological processes that stress drives have a serious detrimental effect on the ability to heal, cope and maintain a positive quality of life. This is becoming increasingly clear in the case of neurodegenerative diseases. Neurodegenerative diseases involve the devastating loss of cognitive and motor function which is stressful in itself, but can also disrupt neural circuits that mediate stress responses. Disrupting these circuits produces aberrant emotional and aggressive behavior that causes long-term care to be especially difficult. In addition, added stress drives progression of the disease and can exacerbate symptoms. In this review, I describe how neural and endocrine pathways activated by stress interact with ongoing neurodegenerative disease from both a clinical and experimental perspective.
Collapse
Affiliation(s)
- Nicholas J. Justice
- Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, TX, 77030, USA
| |
Collapse
|
14
|
ATP-sensitive potassium-channel inhibitor glibenclamide attenuates HPA axis hyperactivity, depression- and anxiety-related symptoms in a rat model of Alzheimer's disease. Brain Res Bull 2018; 137:265-276. [PMID: 29307659 DOI: 10.1016/j.brainresbull.2018.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/13/2017] [Accepted: 01/03/2018] [Indexed: 12/17/2022]
Abstract
Affective disorders including depression and anxiety are among the most prevalent behavioral abnormalities in patients with Alzheimer's disease (AD), which affect the quality of life and progression of the disease. Dysregulation of the hypothalamic-pituitary-adrenal-(HPA) axis has been reported in affective disorders and AD. Recent studies revealed that current antidepressant drugs are not completely effective for treating anxiety- and depression-related disorders in people with dementia. ATP-sensitive-potassium-(KATP) channels are well-known to be involved in AD pathophysiology, HPA axis function and the pathogenesis of depression and anxiety-related behaviors. Thus, targeting of KATP channel may be a potential therapeutic strategy in AD. Hence, we investigated the effects of intracerebroventricular injection of Aβ25-35 alone or in combination with glibenclamide, KATP channel inhibitor on depression- and anxiety-related behaviors as well as HPA axis response to stress in rats. To do this, non-Aβ25-35- and Aβ25-35-treated rats were orally treated with glibenclamide, then the behavioral consequences were assessed using sucrose preference, forced swim, light-dark box and plus maze tests. Stress-induced corticosterone levels following forced swim and plus maze tests were also evaluated as indicative of abnormal HPA-axis-function. Aβ25-35 induced HPA axis hyperreactivity and increased depression- and anxiety-related symptoms in rats. Our results showed that blockade of KATP channels with glibenclamide decreased depression- and anxiety-related behaviors by normalizing HPA axis activity in Aβ25-35-treated rats. This study provides additional evidence that Aβ administration can induce depression- and anxiety-like symptoms in rodents, and suggests that KATP channel inhibitors may be a plausible therapeutic strategy for treating affective disorders in AD patients.
Collapse
|
15
|
Zeng J, Li T, Gong M, Jiang W, Yang T, Chen J, Liu Y, Chen L. Marginal Vitamin A Deficiency Exacerbates Memory Deficits Following Aβ1-42 Injection in Rats. Curr Alzheimer Res 2017; 14:562-570. [PMID: 28017127 PMCID: PMC5421133 DOI: 10.2174/1567205013666161223162110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/09/2016] [Accepted: 12/16/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Although clinical vitamin A deficiency (VAD), which is a public health problem developing throughout the world, has been well controlled, marginal vitamin A deficiency (MVAD) is far more prevalent, especially among pregnant women and preschool children in China. Increasing evidence suggests that VAD is involved in the pathogenesis of Alzheimer's disease (AD). However, whether MVAD, beginning early in life, increases the risk of developing AD has yet to be determined. OBJECTIVE The goal of this study was to investigate the long-term effects of MVAD on the pathogenesis of AD in rats. METHOD An MVAD model was generated from maternal MVAD rats and maintained with an MVAD diet after weaning. The males were bilaterally injected with aggregated amyloid β (Aβ)1-42 into the CA3 area of the hippocampus, and the AD-associated cognitive and neuropathological phenotypes were examined. RESULTS We found that MVAD feeding significantly aggravated Aβ1-42-induced learning and memory deficits in the Morris water maze test. MVAD did not induce the mRNA expression of retinoic acid receptors (RARs), a disintegrin and metalloprotease 10 (ADAM10) or insulin-degrading enzyme (IDE) in Aβ1-42-injected rats. Moreover, RARα and RARγ mRNA were positively correlated with ADAM10 mRNA, whereas RARβ mRNA was positively correlated with IDE mRNA. CONCLUSION Our study suggests that MVAD beginning from the embryonic period perturbs the ADassociated genes, resulting in an enhanced risk of developing AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li Chen
- Address correspondence to this author at the No.136 Zhongshan Er Road, Yuzhong District, Chongqing, 400014 P.R. China; Tel: 86-23-61966251; Fax: 86-23-61966253; E-mail:
| |
Collapse
|