1
|
Huang CH, Chou YH, Yeh HW, Huang JY, Yang SF, Yeh CB. Risk of Cancer after Lower Urinary Tract Infection: A Population-Based Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16030390. [PMID: 30704106 PMCID: PMC6388119 DOI: 10.3390/ijerph16030390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/28/2022]
Abstract
To investigate the association among lower urinary tract infection (UTI), the type and timing of antibiotic usage, and the subsequent risk of developing cancers, especially genitourinary cancers (GUC), in Taiwan. This retrospective population-based cohort study was conducted using 2009–2013 data from the Longitudinal Health Insurance Database. This study enrolled patients who were diagnosed with a UTI between 2010 and 2012. A 1:2 propensity score-matched control population without UTI served as the control group. Multivariate analysis with a multiple Cox regression model was applied to analyze the data. A total of 38,084 patients with UTI were included in the study group, and 76,168 participants without UTI were included in the control group. The result showed a higher hazard ratio of any cancer in both sexes with UTI (for males, adjusted hazard ratio (aHR) = 1.32; 95% confidence interval (CI) = 1.12–1.54; for females, aHR = 1.21; 95% CI = 1.08–1.35). Patients with UTI had a higher probability of developing new GUC than those without UTI. Moreover, the genital organs, kidney, and urinary bladder of men were significantly more affected than those of women with prior UTI. Furthermore, antibiotic treatment for more than 7 days associated the incidence of bladder cancer in men (7–13 days, aHR = 1.23, 95% CI = 0.50–3.02; >14 days, aHR = 2.73, CI = 1.32–5.64). In conclusion, UTI is significantly related to GUC and may serve as an early sign of GUC, especially in the male genital organs, prostate, kidney, and urinary bladder. During UTI treatment, physicians should cautiously prescribe antibiotics to patients.
Collapse
Affiliation(s)
- Chia-Hung Huang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Lin Shin Hospital, Taichung 402, Taiwan.
| | - Ying-Hsiang Chou
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Han-Wei Yeh
- School of Medicine, Chang Gung University, Taoyuan City 333, Taiwan.
| | - Jing-Yang Huang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Chao-Bin Yeh
- Department of Emergency Medicine, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| |
Collapse
|
2
|
Kimura M, Mizukami S, Watanabe Y, Onda N, Yoshida T, Shibutani M. Aberrant cell cycle regulation in rat liver cells induced by post-initiation treatment with hepatocarcinogens/hepatocarcinogenic tumor promoters. ACTA ACUST UNITED AC 2016; 68:399-408. [PMID: 27402199 DOI: 10.1016/j.etp.2016.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/22/2016] [Accepted: 06/07/2016] [Indexed: 01/23/2023]
Abstract
The present study aimed to determine the onset time of hepatocarcinogen/hepatocarcinogenic tumor promoter-specific cell proliferation, apoptosis and aberrant cell cycle regulation after post-initiation treatment. Six-week-old rats were treated with the genotoxic hepatocarcinogen, carbadox (CRB), the marginally hepatocarcinogenic leucomalachite green (LMG), the tumor promoter, β-naphthoflavone (BNF) or the non-carcinogenic hepatotoxicant, acetaminophen, for 2, 4 or 6 weeks during the post-initiation phase using a medium-term liver bioassay. Cell proliferation activity, expression of G2 to M phase- and spindle checkpoint-related molecules, and apoptosis were immunohistochemically analyzed at week 2 and 4, and tumor promotion activity was assessed at week 6. At week 2, hepatocarcinogen/tumor promoter-specific aberrant cell cycle regulation was not observed. At week 4, BNF and LMG increased cell proliferation together with hepatotoxicity, while CRB did not. Additionally, BNF and CRB reduced the number of cells expressing phosphorylated-histone H3 in both ubiquitin D (UBD)(+) cells and Ki-67(+) proliferating cells, suggesting development of spindle checkpoint dysfunction, regardless of cell proliferation activity. At week 6, examined hepatocarcinogens/tumor promoters increased preneoplastic hepatic foci expressing glutathione S-transferase placental form. These results suggest that some hepatocarcinogens/tumor promoters increase their toxicity after post-initiation treatment, causing regenerative cell proliferation. In contrast, some genotoxic hepatocarcinogens may disrupt the spindle checkpoint without facilitating cell proliferation at the early stage of tumor promotion. This suggests that facilitation of cell proliferation and disruption of spindle checkpoint function are induced by different mechanisms during hepatocarcinogenesis. Four weeks of post-initiation treatment may be sufficient to induce hepatocarcinogen/tumor promoter-specific cellular responses.
Collapse
Affiliation(s)
- Masayuki Kimura
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Sayaka Mizukami
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Yousuke Watanabe
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Nobuhiko Onda
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|