1
|
Chen Y, Cheng Q, Li S, Jin L, Li Z, Ren A, Wang L. Organotin exposure and DNA methylation in non-syndromic cleft lip and palate: Integrating findings from case-control studies and animal experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176214. [PMID: 39299340 DOI: 10.1016/j.scitotenv.2024.176214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Human exposure to organotin is common but little is known about the adverse pregnancy outcomes. This study aimed to explore the association between organotin exposure and the risk of non-syndromic cleft lip with or without cleft palate (NSCL/P) and to explore the underlying mechanism. Placental samples (109 NSCL/P cases and 128 controls) were analyzed for 8 organotin concentrations, and subsequent animal experiments were conducted by administering tributyltin (TBT) during critical developmental periods. DNA methylation BeadChip analysis (12 NSCL/P and 12 controls), bisulfite Sequencing analysis (3 NSCL/P and 3 controls mice), and RNA sequencing were performed to explore epigenetic mechanisms. Logistic regression, LASSO regression, support vector machine, random forest, and mediation effect analysis were utilized to identify key genes related to TBT and NSCL/P. Only tributyltin met the detection criteria for further analysis among 8 compounds. The median levels of TBT in cases (8.93 ng/g) were statistically significantly higher than those in controls (5.33 ng/g). Excessive TBT exposure in maternal placenta was associated with an increased risk of NSCL/P (OR = 6.44, 95 % CI, 2.91-14.25) in humans, showing a dose-response relationship (p for trend <0.05). 288 differentially methylated CpG sites in 129 genes were identified between cases and controls. Tributyltin was associated with FGFR2 and SCD hypomethylation, which were identified as potential key genes associated with NSCL/P. Mediation analysis suggested that DNA methylation of FGFR2 and SCD may mediate the impact of TBT on NSCL/P occurrence. TBT exposure during the critical period in mice (GD8.5-GD15.5) can induce progeny NSCL/P. Altered FGFR2 and SCD hypomethylation and gene expression observed in response to TBT exposure in fetal mice. Excessive TBT exposure was associated with increased risks of human NSCL/P. TBT exposure can induce NSCL/P in fetal mice. FGFR2 and SCD were implicated in NSCL/P pathogenesis, potentially mediated by DNA methylation alterations.
Collapse
Affiliation(s)
- Yongyan Chen
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Qianhui Cheng
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Sainan Li
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Lei Jin
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Linlin Wang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China.
| |
Collapse
|
2
|
da Costa CS, Alahmadi H, Warner GR, Nunes MT, Dias GRM, Miranda-Alves L, Graceli JB. Effects of tributyltin on placental and reproductive abnormalities in offspring. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e240186. [PMID: 39876959 PMCID: PMC11771755 DOI: 10.20945/2359-4292-2024-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/07/2024] [Indexed: 01/31/2025]
Abstract
Tributyltin (TBT) is an organotin compound and a common persistent environmental pollutant with endocrine-disrupting chemical (EDC) actions. It can accumulate in the environment at various concentrations throughout the food chain in the ecosystem, posing a risk to human health, especially during critical periods such as gestation and fetal and offspring development. In this review, we report the results of studies describing the consequences of TBT exposure on placental and reproductive parameters in offspring of both sexes. Results from in vivo and in vitro studies clearly indicate that TBT causes adverse effects on placental development and reproductive parameters in offspring. However, substantial knowledge gaps remain in the literature, requiring further research to better understand the mechanisms behind TBT effects on placental and reproductive disruption in offspring.
Collapse
Affiliation(s)
- Charles S. da Costa
- Universidade Federal do Espírito SantoDepartamento de MorfologiaVitóriaESBrasilDepartamento de Morfologia, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | - Hanin Alahmadi
- New Jersey Institute of TechnologyDepartment of Chemistry and Environmental ScienceNewarkNJUSADepartment of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Genoa R. Warner
- New Jersey Institute of TechnologyDepartment of Chemistry and Environmental ScienceNewarkNJUSADepartment of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Maria Tereza Nunes
- Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de Fisiologia e BiofísicaSão PauloSPBrasilDepartamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Glaecir Roseni Mundstock Dias
- Universidade Federal do Rio de JaneiroPrograma de Pós-graduação em EndocrinologiaFaculdade de MedicinaRio de JaneiroRJBrasilPrograma de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Universidade Federal do Rio de JaneiroInstituto de Biofísica Carlos Chagas FilhoLaboratório de Fisiologia Endócrina Doris RosenthalRio de JaneiroRJBrasilLaboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil.
| | - Leandro Miranda-Alves
- Universidade Federal do Rio de JaneiroPrograma de Pós-graduação em EndocrinologiaFaculdade de MedicinaRio de JaneiroRJBrasilPrograma de Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Universidade Federal do Rio de JaneiroInstituto de Biofísica Carlos Chagas FilhoLaboratório de Fisiologia Endócrina Doris RosenthalRio de JaneiroRJBrasilLaboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil.
| | - Jones B. Graceli
- Universidade Federal do Espírito SantoDepartamento de MorfologiaVitóriaESBrasilDepartamento de Morfologia, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
- Southern Illinois UniversitySchool of Agricultural SciencesAnimal ScienceCarbondaleILUSAAnimal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, IL, USA
| |
Collapse
|
3
|
Furukawa S, Tsuji N, Hayashi S, Kuroda Y, Kimura M, Kojima C, Takeuchi K. Effects of cyclophosphamide on rat placental development. J Toxicol Pathol 2023; 36:159-169. [PMID: 37577367 PMCID: PMC10412958 DOI: 10.1293/tox.2022-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/16/2023] [Indexed: 08/15/2023] Open
Abstract
We examined the morphological effects of cyclophosphamide (CPA) on placental development in pregnant rats. CPA was administered as a single dose to pregnant rats intraperitoneally at 0 mg/kg (the control group), 25 mg/kg on gestation day (GD) 12 (the CPA GD 12-treated group), and 25 mg/kg on GD 14 (the CPA GD 14-treated group). The fetal and placental weight decreased in the CPA-treated groups, complete fetal resorption from GD 17 onwards in the CPA GD 12-treated group, and external malformations in the CPA GD 14-treated group. Histopathologically, CPA induced apoptosis and/or cell proliferation inhibition in each part of the placenta. In the labyrinth zone, syncytiotrophoblasts were selectively reduced, resulting in a small placenta. In the basal zone, the number of spongiotrophoblasts was reduced, resulting in hypoplasia of glycogen cell islands. In addition, a small number of interstitial trophoblasts invaded the metrial gland from the basal zone on GD 15. The severity of these lesions was higher in the CPA GD 12-treated group than in the CPA GD 14-treated group. In the metrial gland, although the number of uterine natural killer cells was reduced, metrial gland development was not affected.
Collapse
Affiliation(s)
- Satoshi Furukawa
- Planning and Development Department, Nissan Chemical
Corporation, 2-5-1 Nihonbashi, Chuo-ku, Tokyo 103-6119, Japan
| | - Naho Tsuji
- Planning and Development, Agricultural Chemical Division,
Nissan Chemical Corporation, 2-5-1 Nihonbashi, Chuo-ku, Tokyo 103-6119, Japan
| | - Seigo Hayashi
- Biological Research Laboratories, Nissan Chemical
Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Yusuke Kuroda
- Biological Research Laboratories, Nissan Chemical
Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Masayuki Kimura
- Biological Research Laboratories, Nissan Chemical
Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Chisato Kojima
- Biological Research Laboratories, Nissan Chemical
Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Kazuya Takeuchi
- Biological Research Laboratories, Nissan Chemical
Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| |
Collapse
|
4
|
Lu Y, Tang H, Wang X, Xu J, Sun F. Dibutyltin dichloride exposure affects mouse oocyte quality by inducing spindle defects and mitochondria dysfunction. CHEMOSPHERE 2022; 295:133959. [PMID: 35157879 DOI: 10.1016/j.chemosphere.2022.133959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Dibutyltin dichloride (DBTCl) is a widespread environmental pollutant that is frequently employed as a light and heat sustainer for polyvinyl chloride (PVC) plastics and is a teratogen in vivo. Nevertheless, its destructiveness in mammalian oocytes remains unclear. This study highlighted the consequences of DBTCl vulnerability on mouse oocyte. Our results revealed that exposure to 5.0 mg/kg/day of DBTCl for ten days reduced the number of mature follicles and oocytes in the ovaries and inhibited the meiotic maturation of oocytes. Single-cell transcriptomic analysis indicated that DBTCl exposure interfered with the expression of more than 400 genes in oocytes, including those involved in multiple biological pathways. Specifically, DBTCl exposure impaired spindle assembly and chromosome alignment. In addition, DBTCl exposure caused mitochondrial dysfunction, which led to the accumulation of reactive oxygen species (ROS) and induced apoptosis. In summary, our study illustrates that mitochondrial dysfunction and redox perturbation are the major causes of the reduced quality of oocytes exposed to DBTCl.
Collapse
Affiliation(s)
- Yajuan Lu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, Jiangsu, China
| | - Hanyu Tang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, Jiangsu, China
| | - Xia Wang
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Junjie Xu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, Jiangsu, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, Jiangsu, China.
| |
Collapse
|
5
|
Denuzière A, Ghersi-Egea JF. Cerebral concentration and toxicity of endocrine disrupting chemicals: The implication of blood-brain interfaces. Neurotoxicology 2022; 91:100-118. [DOI: 10.1016/j.neuro.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
|
6
|
Marinello WP, Patisaul HB. Endocrine disrupting chemicals (EDCs) and placental function: Impact on fetal brain development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:347-400. [PMID: 34452690 DOI: 10.1016/bs.apha.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Pregnancy is a critical time of vulnerability for the development of the fetal brain. Exposure to environmental pollutants at any point in pregnancy can negatively impact many aspects of fetal development, especially the organization and differentiation of the brain. The placenta performs a variety of functions that can help protect the fetus and sustain brain development. However, disruption of any of these functions can have negative impacts on both the pregnancy outcome and fetal neurodevelopment. This review presents current understanding of how environmental exposures, specifically to endocrine disrupting chemicals (EDCs), interfere with placental function and, in turn, neurodevelopment. Some of the key differences in placental development between animal models are presented, as well as how placental functions such as serving as a xenobiotic barrier and exchange organ, immune interface, regulator of growth and fetal oxygenation, and a neuroendocrine organ, could be vulnerable to environmental exposure. This review illustrates the importance of the placenta as a modulator of fetal brain development and suggests critical unexplored areas and possible vulnerabilities to environmental exposure.
Collapse
Affiliation(s)
- William P Marinello
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| | - Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
7
|
Liu H, Jiang W, Ye Y, Yang B, Shen X, Lu S, Zhu J, Liu M, Yang C, Kuang H. Maternal exposure to tributyltin during early gestation increases adverse pregnancy outcomes by impairing placental development. ENVIRONMENTAL TOXICOLOGY 2021; 36:1303-1315. [PMID: 33720505 DOI: 10.1002/tox.23127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Tributyltin (TBT) is a persistent organotin pollutant widely used as agricultural and wood biocides, exhibiting well-documented toxicity to reproductive functions in aquatic organisms. However, the effect of TBT on early pregnancy and placental development has been rarely studied in mice. Pregnant mice were fed with 0, 0.2, and 2 mg/kg/day TBT from gravid day 1 to day 8 or 13. TBT exposure led to an increase in the number of resorbed embryo and a reduction in the weight of fetus at gestational days 13. Further study showed that TBT significantly decreased placental weight and area, lowered laminin immunoreactivity and the expressions of placental development-related molecules including Fra1, Eomes, Hand1, and Ascl2. Moreover, TBT treatment markedly inhibited the placental proliferation and induced up-regulation of p53 and cleaved caspase-3 proteins, and down-regulation of Bcl-2 protein. In addition, TBT administration increased levels of malondialdehyde and H2 O2 and decreased activities of catalase and superoxide dismutase. Collectively, these results suggested TBT-induced adverse pregnancy outcomes during early pregnancy might be involved in developmental disorders of the placenta via dysregulation of key molecules, proliferation, apoptosis, and oxidative stress.
Collapse
Affiliation(s)
- Hui Liu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Wenyu Jiang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
- Department of Clinic Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Yafen Ye
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Bei Yang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Xin Shen
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Siying Lu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Jun Zhu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Mengling Liu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Chuanzhen Yang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Haibin Kuang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Li G, Chang X, Zhao Y, Li D, Kang X. Dibutyltin (DBT) inhibits in vitro androgen biosynthesis of rat immature Leydig cells. Toxicology 2021; 456:152779. [PMID: 33862173 DOI: 10.1016/j.tox.2021.152779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/14/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022]
Abstract
Dibutyltin (DBT) is an organotine widely applied in stabilizing plastics and de-worm poultry agents. But the effects of DBT on immature Leydig cells remain elusive. Thus, the present study aims to investigate whether in vitro exposure to DBT affects immature Leydig cell function of androgen production and delineate the underlying mechanisms. 35 days old rat immature Leydig cells were isolated and exposed to DBT at different concentrations (0, 0.1, 0.5, and 1 μM). It was found that 0.5 and 1 μM DBT lowered androgen production from immature Leydig cells under basal conditions. DBT at 1 μM lowered androgen production from immature Leydig cells under the stimulations from luteinizing hormone or 8-Br-cAMP. DBT at 1 μM lowered 22R-hydroxycholesterol and pregnenolone-mediated androgen production from immature Leydig cells. DBT at 0.1, 0.5, and 1 μM down-regulated the mRNA expression levels of Lhcgr, Star, Cyp11a1, Hsd3b1, and Nr5a1. Further investigation found that DBT at 1 μM directly inhibited CYP11A1 and 3β-HSD1 enzyme activities. In conclusion, this study told us that in vitro exposure to DBT inhibited androgen biosynthesis in immature Leydig cells by selectively interfering with the expressions and enzyme activities of CYP11A1 and 3β-HSD1.
Collapse
Affiliation(s)
- Guoping Li
- Department of Urology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Xiuting Chang
- Hainan Institute for Food Control (Hainan Experimental Animal Center), Haikou 570314, China
| | - Yingshu Zhao
- Hainan Institute for Drug Control, Hainan Key Laboratory for Pharmaceutical Quality Research, Haikou 570216, China
| | - Daoyuan Li
- Department of Urology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Xinli Kang
- Department of Urology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China.
| |
Collapse
|
9
|
Shimma S, Makino Y, Kojima K, Hirata T. Quantitative Visualization of Lanthanum Accumulation in Lanthanum Carbonate-Administered Human Stomach Tissues Using Mass Spectrometry Imaging. ACTA ACUST UNITED AC 2020; 9:A0086. [PMID: 32754422 PMCID: PMC7358108 DOI: 10.5702/massspectrometry.a0086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/29/2020] [Indexed: 11/25/2022]
Abstract
Platinum, a transition metal that is widely used in anti-cancer agents, also results in the development of nephropathy due to severe adverse reactions caused by platinum-induced nephrotoxicity. Reports on imaging with metals other than platinum remain are limited, even in preclinical studies. Furthermore, most of these are case reports, and the relationship between the distribution of the metal and clinical observations in human samples is not well understood. Here we report on visualizing lanthanum (139La), a component of Fosrenol, which is usually used for the treatment of hyperphosphatemia. Gastric inflammation, also known as hemorrhagic gastritis, is the main adverse event caused by Fosrenol. To conduct this study, 139La was visualized in gastric biopsy samples obtained from a patient using quantitative laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). We also compared the distribution of 139La in tissue and histochemical results. The areas where 139La accumulated corresponded to the macrophage-positive areas observed in immunohistochemistry studies using an anti-CD68 antibody. In contrast, we observed a debris-like crystal morphology in hematoxylin and eosin staining tissues. The debris was also associated with 139La accumulation. The abnormal accumulation of 139La crystals caused the observed inflammation. This phenomenon was previously characterized, but this is the first report in which 139La distribution and histochemical results are compared using LA-ICP-MS.
Collapse
Affiliation(s)
- Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshiki Makino
- Geochemical Research Center, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Kazuto Kojima
- Keisuikai Oka Hospital, Honjo, Saitama 367-0031, Japan
| | - Takafumi Hirata
- Geochemical Research Center, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Gingrich J, Ticiani E, Veiga-Lopez A. Placenta Disrupted: Endocrine Disrupting Chemicals and Pregnancy. Trends Endocrinol Metab 2020; 31:508-524. [PMID: 32249015 PMCID: PMC7395962 DOI: 10.1016/j.tem.2020.03.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/19/2020] [Accepted: 03/06/2020] [Indexed: 01/06/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are chemicals that can interfere with normal endocrine signals. Human exposure to EDCs is particularly concerning during vulnerable periods of life, such as pregnancy. However, often overlooked is the effect that EDCs may pose to the placenta. The abundance of hormone receptors makes the placenta highly sensitive to EDCs. We have reviewed the most recent advances in our understanding of EDC exposures on the development and function of the placenta such as steroidogenesis, spiral artery remodeling, drug-transporter expression, implantation and cellular invasion, fusion, and proliferation. EDCs reviewed include those ubiquitous in the environment with available human biomonitoring data. This review also identifies critical gaps in knowledge to drive future research in the field.
Collapse
Affiliation(s)
- Jeremy Gingrich
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Elvis Ticiani
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA
| | - Almudena Veiga-Lopez
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
11
|
Furukawa S, Tsuji N, Hayashi S, Kuroda Y, Kimura M, Hayakawa C, Takeuchi K, Sugiyama A. The effects of β-naphthoflavone on rat placental development. J Toxicol Pathol 2019; 32:275-282. [PMID: 31719754 PMCID: PMC6831496 DOI: 10.1293/tox.2019-0047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/23/2019] [Indexed: 01/21/2023] Open
Abstract
The morphological effects of β-naphthoflavone (β-NF) on placental development in
pregnant rats were examined. β-NF, administered to pregnant rats intraperitoneally at 15
mg/kg bw from gestation day (GD) 9 to GD 14, had no effect on maternal body weight gain,
mortality, or clinical sign. In the β-NF-exposed rats, intrauterine growth retardation
(IUGR) rates increased on GDs 17 and 21, although there was no effect on fetal mortality
rate, fetal or placental weight, or external fetal abnormality. Histopathologically, β-NF
induced apoptosis and inhibition of cell proliferation of the trophoblastic septa in the
labyrinth zone, resulting in its poor development. In the basal zone, β-NF induced
spongiotrophoblast apoptosis and delayed glycogen islet regression, resulting in their
cystic degeneration. β-NF-induced CYP1A1 expression was detected in the endothelial cells
of the fetal capillaries in the labyrinth zone and in the endothelial cells of the spiral
arteries in the metrial gland, but not in any trophoblasts. This indicates that CYP1A1 is
inducible in the endothelial cells of the fetal capillaries in the labyrinth zone, and
that these cells have an important role in metabolizing CYP1A1 inducers crossing the
placental barrier.
Collapse
Affiliation(s)
- Satoshi Furukawa
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Naho Tsuji
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Seigo Hayashi
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Yusuke Kuroda
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Masayuki Kimura
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Chisato Hayakawa
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Kazuya Takeuchi
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Akihiko Sugiyama
- Veterinary Clinical Pathology, Faculty of Veterinary Medicine Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime 794-8555, Japan
| |
Collapse
|
12
|
Huang X, Ma T, Yin Y. Dibutyltin Dichloride Retards Leydig Cell Developmental Regeneration in Adult Rat Testis. Front Pharmacol 2018; 9:1320. [PMID: 30555322 PMCID: PMC6283912 DOI: 10.3389/fphar.2018.01320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/29/2018] [Indexed: 12/21/2022] Open
Abstract
Dibutyltin dichloride (DBTCl), widely used as plastic stabilizer, can cause comprehensive toxicity. The present study aims to investigate the effects of DBTCl on rat Leydig cell developmental regeneration and characterize the related mechanism. Adult male Sprague Dawley rats were randomly divided into four groups and gavaged with saline (control) or 5, 10, or 20 mg/kg/day of DBTCl consecutively for 10 days. At the end of the DBTCl treatment, all rats received a single intraperitoneal injection (i.p.,) of 75 mg/kg ethane dimethane sulfonate (EDS) to eliminate all the adult Leydig cells and to induce Leydig cell developmental regeneration. Leydig cell developmental regeneration was evaluated by measuring the levels of serum testosterone, luteinizing hormone, and follicle-stimulating hormone on days 7, 35, and 56 post-EDS. Leydig cell gene and protein expression levels, as well as cell morphology and cell counts were also carried out on day 56 post-EDS. The present study found that DBTCl significantly reduced serum testosterone levels on days 35 and 56 post-EDS, but increased serum luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels on day 56 at ≥ 5 mg/kg/day. The mRNA and protein levels of Leydig (Lhcgr, Scarb1, Star, Cyp11a1, Hsd17b3, and Hsd11b1) and Sertoli cells (Fshr, Amh, and Sox9) were significantly downregulated in the DBTCl-treated testes compared to the control. Immunohistochemical staining showed that DBTCl-treatment caused fewer regenerated Leydig cells and impaired Sertoli cell development and function in the testis on day 56 post-EDS. In conclusion, the present study demonstrates that DBTCl retards rat Leydig cell developmental regeneration by downregulating steroidogenesis-related enzymes at the gene and protein levels, inhibiting Leydig cell proliferation and impairing Sertoli cell function and development.
Collapse
Affiliation(s)
- Xiande Huang
- Department of Urology, Gansu Provincial Hospital, Lanzhou, China
| | - Taoye Ma
- Department of Urology, Second Provincial People's Hospital of Gansu, Lanzhou, China
| | - Yongsheng Yin
- Department of Urology, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
13
|
Furukawa S, Tsuji N, Sugiyama A. Morphology and physiology of rat placenta for toxicological evaluation. J Toxicol Pathol 2018; 32:1-17. [PMID: 30739991 PMCID: PMC6361663 DOI: 10.1293/tox.2018-0042] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022] Open
Abstract
The placenta plays a pivotal role in fetal growth, and placental dysfunction and injury are associated with embryo/fetal toxicity. Histological examination of the rat placenta for safety evaluation provides valuable clues to the mechanisms of this toxicity. However, the placenta has specific and complex biological features unlike those of other organs, and placental structure dramatically changes depending on the time during the gestation period. Thus, time-dependent histopathological examination of the rat placenta should be performed based on the understanding of normal developmental changes in morphology and function. The placentas of rats and humans are both anatomically classified as discoid and hemochorial types. However, there are differences between rats and humans in terms of placental histological structure, the fetal-maternal interface, and the function of the yolk sac. Therefore, extrapolation of placental toxicity from rats to humans should be done cautiously in the evaluation of risk factors. This review describes the development, morphology, physiology, and toxicological features of the rat placenta and the differences between the rat and human placenta to enable accurate evaluation of reproductive and developmental toxicity in studies.
Collapse
Affiliation(s)
- Satoshi Furukawa
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Naho Tsuji
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Akihiko Sugiyama
- Veterinary Clinical Pathology, Faculty of Veterinary Medicine Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime794-8555, Japan
| |
Collapse
|