1
|
Noro T, Guo X, Namekata K, Shinozaki Y, Hashimoto N, Moriya-Ito K, Harada C, Nakano T, Harada T. Valproic acid prevents NMDA-induced retinal degeneration in marmosets. Neurosci Lett 2025; 855:138197. [PMID: 40090511 DOI: 10.1016/j.neulet.2025.138197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/03/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Valproic acid (VPA) is a prescribed drug widely used for treatment of epilepsy, mood disorders, migraines and neuropathic pain. Accumulating evidence suggests that VPA possess neuroprotective properties. Glaucoma, one of the leading causes of vision loss in the world, is characterized by progressive degeneration of retinal ganglion cells (RGCs) and their axons. Intravitreal injection of N-methyl-D-aspartate (NMDA) is well studied in rodents as an acute model of RGC death. In the present study, we first investigated whether NMDA induced retinal degeneration in non-human primate common marmosets as the structure and function of the eye is similar to that of humans. We found that NMDA had no effects on intraocular pressure but induced retinal degeneration by using optical coherence tomography and multifocal electroretinogram, both of which are non-invasive methods. In addition, VPA treatment suppressed acute retinal degeneration and ameliorated visual impairment in marmosets. Our findings raise intriguing possibilities that VPA may be useful for preventing RGC death and suggest that the marmoset is a useful animal model for studying glaucoma.
Collapse
Affiliation(s)
- Takahiko Noro
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Youichi Shinozaki
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Nanako Hashimoto
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Keiko Moriya-Ito
- Developmental Neuroscience Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
2
|
Liu G, Huang L, Tan J, Wang Y, Lan C, Chen Y, Mao Y, Wang X, Fan N, Zhu Y, Zhu X, Liu X. Characterization of a monkey model with experimental retinal damage induced by N-methyl-D-aspartate. Dis Model Mech 2024; 17:dmm050033. [PMID: 39056117 PMCID: PMC11554257 DOI: 10.1242/dmm.050033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
N-methyl-D-aspartate (NMDA)-induced retinal damage has been well studied in rodents, but the detailed mechanisms have not yet been characterized in nonhuman primates. Here, we characterized the retinal degenerative effects of NMDA on rhesus monkeys in vivo. NMDA saline or saline-only control was injected intravitreally to the randomly assigned eyes and contralateral eyes of four rhesus monkeys, respectively. The structural and functional changes of retina were characterized by optical coherence tomography and electroretinography on days 0, 4, 30 and 60 post injection. Both optic discs and macular areas of the NMDA-injected eyes initially presented with a transient retinal thickening, followed by continued retinal thinning. The initial, transient retinal thickening has also been observed in glaucoma patients, but this has not been reported in rodent NMDA models. This initial response was followed by loss of retina ganglion cells (RGCs), which is similar to glaucomatous optic neuropathy and other RGC-related retinal degenerations. The amplitudes of both the photopic negative response and pattern electroretinogram decreased significantly and remained low until the end of the study. Thus, the NMDA monkey model may serve as a more clinically relevant animal model of retinal damage.
Collapse
Affiliation(s)
- Guo Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Longxiang Huang
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Junkai Tan
- Xiamen Eye Center, Xiamen University, Xiamen, 361004, China
| | - Yun Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, 518040, China
| | - Chunlin Lan
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Yaxi Chen
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, 518040, China
| | - Yukai Mao
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Xizhen Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, 518040, China
| | - Ning Fan
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, 518040, China
| | - Yihua Zhu
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Xuyang Liu
- Xiamen Eye Center, Xiamen University, Xiamen, 361004, China
- Department of Ophthalmology, Shenzhen People's Hospital, the 2nd Clinical Medical College, Jinan University, Shenzhen, 518020, China
| |
Collapse
|
3
|
Barroso Á, Ketelhut S, Nettels-Hackert G, Heiduschka P, del Amor R, Naranjo V, Kemper B, Schnekenburger J. Durable 3D murine ex vivo retina glaucoma models for optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:4421-4438. [PMID: 37791268 PMCID: PMC10545187 DOI: 10.1364/boe.494271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 10/05/2023]
Abstract
Durable and standardized phantoms with optical properties similar to native healthy and disease-like biological tissues are essential tools for the development, performance testing, calibration and comparison of label-free high-resolution optical coherence tomography (HR-OCT) systems. Available phantoms are based on artificial materials and reflect thus only partially ocular properties. To address this limitation, we have performed investigations on the establishment of durable tissue phantoms from ex vivo mouse retina for enhanced reproduction of in vivo structure and complexity. In a proof-of-concept study, we explored the establishment of durable 3D models from dissected mouse eyes that reproduce the properties of normal retina structures and tissue with glaucoma-like layer thickness alterations. We explored different sectioning and preparation procedures for embedding normal and N-methyl-D-aspartate (NMDA)-treated mouse retina in transparent gel matrices and epoxy resins, to generate durable three-dimensional tissue models. Sample quality and reproducibility were quantified by thickness determination of the generated layered structures utilizing computer-assisted segmentation of OCT B-scans that were acquired with a commercial HR-OCT system at a central wavelength of 905 nm and analyzed with custom build software. Our results show that the generated 3D models feature thin biological layers close to current OCT resolution limits and glaucoma-like tissue alterations that are suitable for reliable HR-OCT performance characterization. The comparison of data from resin-embedded tissue with native murine retina in gels demonstrates that by utilization of appropriate preparation protocols, highly stable samples with layered structures equivalent to native tissues can be fabricated. The experimental data demonstrate our concept as a promising approach toward the fabrication of durable biological 3D models suitable for high-resolution OCT system performance characterization supporting the development of optimized instruments for ophthalmology applications.
Collapse
Affiliation(s)
- Álvaro Barroso
- Biomedical Technology Center of the Medical Faculty, University of Muenster, Mendelstr. 17, D-48149 Muenster, Germany
| | - Steffi Ketelhut
- Biomedical Technology Center of the Medical Faculty, University of Muenster, Mendelstr. 17, D-48149 Muenster, Germany
| | - Gerburg Nettels-Hackert
- Department of Ophthalmology of the Medical Faculty, University of Muenster, Domagkstr. 15, D-48149 Muenster, Germany
| | - Peter Heiduschka
- Department of Ophthalmology of the Medical Faculty, University of Muenster, Domagkstr. 15, D-48149 Muenster, Germany
| | - Rocío del Amor
- Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, Universitat Politècnica de València, Valencia, Spain
| | - Valery Naranjo
- Instituto Universitario de Investigación en Tecnología Centrada en el Ser Humano, Universitat Politècnica de València, Valencia, Spain
| | - Björn Kemper
- Biomedical Technology Center of the Medical Faculty, University of Muenster, Mendelstr. 17, D-48149 Muenster, Germany
| | - Jürgen Schnekenburger
- Biomedical Technology Center of the Medical Faculty, University of Muenster, Mendelstr. 17, D-48149 Muenster, Germany
| |
Collapse
|
4
|
Ambekar YS, Singh M, Scarcelli G, Rueda EM, Hall BM, Poché RA, Larin KV. Characterization of retinal biomechanical properties using Brillouin microscopy. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200208LR. [PMID: 32981240 PMCID: PMC7519206 DOI: 10.1117/1.jbo.25.9.090502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/04/2020] [Indexed: 05/03/2023]
Abstract
SIGNIFICANCE The retina is critical for vision, and several diseases may alter its biomechanical properties. However, assessing the biomechanical properties of the retina nondestructively is a challenge due to its fragile nature and location within the eye globe. Advancements in Brillouin spectroscopy have provided the means for nondestructive investigations of retina biomechanical properties. AIM We assessed the biomechanical properties of mouse retinas using Brillouin microscopy noninvasively and showed the potential of Brillouin microscopy to differentiate the type and layers of retinas based on stiffness. APPROACH We used Brillouin microscopy to quantify stiffness of fresh and paraformaldehyde (PFA)-fixed retinas. As further proof-of-concept, we demonstrated a change in the stiffness of a retina with N-methyl-D-aspartate (NMDA)-induced damage, compared to an undamaged sample. RESULTS We found that the retina layers with higher cell body density had higher Brillouin modulus compared to less cell-dense layers. We have also demonstrated that PFA-fixed retina samples were stiffer compared with fresh samples. Further, NMDA-induced neurotoxicity leads to retinal ganglion cell (RGC) death and reactive gliosis, increasing the stiffness of the RGC layer. CONCLUSION Brillouin microscopy can be used to characterize the stiffness distribution of the layers of the retina and can be used to differentiate tissue at different conditions based on biomechanical properties.
Collapse
Affiliation(s)
- Yogeshwari S. Ambekar
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Manmohan Singh
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Giuliano Scarcelli
- University of Maryland, Fischell Department of Bioengineering, College Park, Maryland, United States
| | - Elda M. Rueda
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, Houston, Texas, United States
| | - Benjamin M. Hall
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, Houston, Texas, United States
| | - Ross A. Poché
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, Houston, Texas, United States
- Address all correspondence to Ross A. Poché, E-mail: ; Kirill V. Larin, E-mail:
| | - Kirill V. Larin
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, Houston, Texas, United States
- Address all correspondence to Ross A. Poché, E-mail: ; Kirill V. Larin, E-mail:
| |
Collapse
|