1
|
Chung IC, Yuan SN, OuYang CN, Lin HC, Huang KY, Chen YJ, Chung AK, Chu CL, Ojcius DM, Chang YS, Chen LC. Src-family kinase-Cbl axis negatively regulates NLRP3 inflammasome activation. Cell Death Dis 2018; 9:1109. [PMID: 30382081 PMCID: PMC6208430 DOI: 10.1038/s41419-018-1163-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Abstract
Activation of the NLRP3 inflammasome is crucial for immune defense, but improper and excessive activation causes inflammatory diseases. We previously reported that Pyk2 is essential for NLRP3 inflammasome activation. Here we show that the Src-family kinases (SFKs)-Cbl axis plays a pivotal role in suppressing NLRP3 inflammasome activation in response to stimulation by nigericin or ATP, as assessed using gene knockout and gene knockdown cells, dominant active/negative mutants, and pharmacological inhibition. We reveal that the phosphorylation of Cbl is regulated by SFKs, and that phosphorylation of Cbl at Tyr371 suppresses NLRP3 inflammasome activation. Mechanistically, Cbl decreases the level of phosphorylated Pyk2 (p-Pyk2) through ubiquitination-mediated proteasomal degradation and reduces mitochondrial ROS (mtROS) production by contributing to the maintenance of mitochondrial size. The lower levels of p-Pyk2 and mtROS dampen NLRP3 inflammasome activation. In vivo, inhibition of Cbl with an analgesic drug, hydrocotarnine, increases inflammasome-mediated IL-18 secretion in the colon, and protects mice from dextran sulphate sodium-induced colitis. Together, our novel findings provide new insights into the role of the SFK-Cbl axis in suppressing NLRP3 inflammasome activation and identify a novel clinical utility of hydrocortanine for disease treatment.
Collapse
Affiliation(s)
- I-Che Chung
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan
| | - Sheng-Ning Yuan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chun-Nan OuYang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan
| | - Hsin-Chung Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 114, Taiwan.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, Taipei, 114, Taiwan
| | - Kuo-Yang Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, 114, Taiwan
| | - Yu-Jen Chen
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, 251, Taiwan.,Department of Radiation Oncology, Mackay Memorial Hospital, New Taipei City, 251, Taiwan
| | - An-Ko Chung
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Ching-Liang Chu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific Arthur A. Dugoni School of Dentistry, San Francisco, CA, 94103, USA.,Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, 333, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, 333, Taiwan
| | - Yu-Sun Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.,Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou, 333, Taiwan
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan.
| |
Collapse
|
2
|
Network analysis of immunotherapy-induced regressing tumours identifies novel synergistic drug combinations. Sci Rep 2015; 5:12298. [PMID: 26193793 PMCID: PMC4508665 DOI: 10.1038/srep12298] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/24/2015] [Indexed: 01/17/2023] Open
Abstract
Cancer immunotherapy has shown impressive results, but most patients do not respond. We hypothesized that the effector response in the tumour could be visualized as a complex network of interacting gene products and that by mapping this network we could predict effective pharmacological interventions. Here, we provide proof of concept for the validity of this approach in a murine mesothelioma model, which displays a dichotomous response to anti-CTLA4 immune checkpoint blockade. Network analysis of gene expression profiling data from responding versus non-responding tumours was employed to identify modules associated with response. Targeting the modules via selective modulation of hub genes or alternatively by using repurposed pharmaceuticals selected on the basis of their expression perturbation signatures dramatically enhanced the efficacy of CTLA4 blockade in this model. Our approach provides a powerful platform to repurpose drugs, and define contextually relevant novel therapeutic targets.
Collapse
|
4
|
Kawabata M, Kaneishi K. Continuous Subcutaneous Infusion of Compound Oxycodone for the Relief of Dyspnea in Patients With Terminally Ill Cancer. Am J Hosp Palliat Care 2012; 30:305-11. [DOI: 10.1177/1049909112448924] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pain and dyspnea are the most prevalent and distressing symptoms in patients with terminally ill cancer. Evidences have accumulated for the effects of morphine on dyspnea, whereas little is known about the effects of oxycodone on dyspnea. We investigated the effectiveness of oxycodone for dyspnea in patients with terminally ill cancer. The injectable form of compound oxycodone (iOC) containing hydrocotarnine was administered continuously via subcutaneous route. We administered iOC to 136 patients. The effect on dyspnea was less conspicuous than pain, yet iOC was effective for dyspnea with varying degrees. None of the adverse effects observed were serious. These results suggest that continuous subcutaneous administration of oxycodone could be one of the reasonable alternatives in the management of dyspnea in patients with terminally ill cancer.
Collapse
Affiliation(s)
| | - Keisuke Kaneishi
- The Palliative Care Unit, Tokyo Kosei-Nenkin Hospital, Tokyo Japan
| |
Collapse
|