1
|
Aguirre EG, Fine MJ, Kenkel CD. Abundance of Oligoflexales bacteria is associated with algal symbiont density, independent of thermal stress in Aiptasia anemones. Ecol Evol 2023; 13:e10805. [PMID: 38077513 PMCID: PMC10701089 DOI: 10.1002/ece3.10805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/18/2023] [Accepted: 11/23/2023] [Indexed: 10/16/2024] Open
Abstract
Many multicellular organisms, such as humans, plants, and invertebrates, depend on symbioses with microbes for metabolic cooperation and exchange. Reef-building corals, an ecologically important order of invertebrates, are particularly vulnerable to environmental stress in part because of their nutritive symbiosis with dinoflagellate algae, and yet also benefit from these and other microbial associations. While coral microbiomes remain difficult to study because of their complexity, the anemone Aiptasia is emerging as a simplified model. Research has demonstrated co-occurrences between microbiome composition and the abundance and type of algal symbionts in cnidarians. However, whether these patterns are the result of general stress-induced shifts or depletions of algal-associated bacteria remains unclear. Our study aimed to distinguish the effect of changes in symbiont density and thermal stress on the microbiome of symbiotic Aiptasia strain CC7 by comparing them with aposymbiotic anemones, depleted of their native symbiont, Symbiodinium linucheae. Our analysis indicated that overall thermal stress had the greatest impact on disrupting the microbiome. We found that three bacterial classes made up most of the relative abundance (60%-85%) in all samples, but the rare microbiome fluctuated between symbiotic states and following thermal stress. We also observed that S. linucheae density correlated with abundance of Oligoflexales, suggesting these bacteria may be primary symbionts of the dinoflagellate algae. The findings of this study help expand knowledge on prospective multipartite symbioses in the cnidarian holobiont and how they respond to environmental disturbance.
Collapse
Affiliation(s)
- Emily G. Aguirre
- Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Marissa J. Fine
- Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Carly D. Kenkel
- Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
2
|
Dual inoculation with Bradyrhizobium liaoningense and Ambispora leptoticha improves drought stress tolerance and Productivity in soybean cultivars, MAUS 2 and DSR 12. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01196-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Zhou J, Wilson GWT, Cobb AB, Zhang Y, Liu L, Zhang X, Sun F. Mycorrhizal and rhizobial interactions influence model grassland plant community structure and productivity. MYCORRHIZA 2022; 32:15-32. [PMID: 35037106 DOI: 10.1007/s00572-021-01061-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/24/2021] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi and rhizobium are likely important drivers of plant coexistence and grassland productivity due to complementary roles in supplying limiting nutrients. However, the interactive effects of mycorrhizal and rhizobial associations on plant community productivity and competitive dynamics remain unclear. To address this, we conducted a greenhouse experiment to determine the influences of these key microbial functional groups on communities comprising three plant species by comparing plant communities grown with or without each symbiont. We also utilized N-fertilization and clipping treatments to explore potential shifts in mycorrhizal and rhizobial benefits across abiotic and biotic conditions. Our research suggests AM fungi and rhizobium co-inoculation was strongly facilitative for plant community productivity and legume (Medicago sativa) growth and nodulation. Plant competitiveness shifted in the presence of AM fungi and rhizobium, favoring M. sativa over a neighboring C4 grass (Andropogon gerardii) and C3 forb (Ratibida pinnata). This may be due to rhizobial symbiosis as well as the relatively greater mycorrhizal growth response of M. sativa, compared to the other model plants. Clipping and N-fertilization altered relative costs and benefits of both symbioses, presumably by altering host-plant nitrogen and carbon dynamics, leading to a relative decrease in mycorrhizal responsiveness and proportional biomass of M. sativa relative to the total biomass of the entire plant community, with a concomitant relative increase in A. gerardii and R. pinnata proportional biomass. Our results demonstrate a strong influence of both microbial symbioses on host-plant competitiveness and community dynamics across clipping and N-fertilization treatments, suggesting the symbiotic rhizosphere community is critical for legume establishment in grasslands.
Collapse
Affiliation(s)
- Jiqiong Zhou
- Department of Grassland Science, College of Grassland Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
- Department of Grassland Science, College of Grassland Science & Technology, China Agricultural University, Beijing, China.
| | - Gail W T Wilson
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, 008C AGH74078, USA
| | - Adam B Cobb
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, 008C AGH74078, USA
| | - Yingjun Zhang
- Department of Grassland Science, College of Grassland Science & Technology, China Agricultural University, Beijing, China
| | - Lin Liu
- Department of Grassland Science, College of Grassland Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xinquan Zhang
- Department of Grassland Science, College of Grassland Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Feida Sun
- Department of Grassland Science, College of Grassland Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Sharma MP, Grover M, Chourasiya D, Bharti A, Agnihotri R, Maheshwari HS, Pareek A, Buyer JS, Sharma SK, Schütz L, Mathimaran N, Singla-Pareek SL, Grossman JM, Bagyaraj DJ. Deciphering the Role of Trehalose in Tripartite Symbiosis Among Rhizobia, Arbuscular Mycorrhizal Fungi, and Legumes for Enhancing Abiotic Stress Tolerance in Crop Plants. Front Microbiol 2020; 11:509919. [PMID: 33042042 PMCID: PMC7527417 DOI: 10.3389/fmicb.2020.509919] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 08/20/2020] [Indexed: 01/31/2023] Open
Abstract
Drought is a critical factor limiting the productivity of legumes worldwide. Legumes can enter into a unique tripartite symbiotic relationship with root-nodulating bacteria of genera Rhizobium, Bradyrhizobium, or Sinorhizobium and colonization by arbuscular mycorrhizal fungi (AMF). Rhizobial symbiosis provides nitrogen necessary for growth. AMF symbiosis enhances uptake of diffusion-limited nutrients such as P, Zn, Cu, etc., and also water from the soil via plant-associated fungal hyphae. Rhizobial and AMF symbioses can act synergistically in promoting plant growth and fitness, resulting in overall yield benefits under drought stress. One of the approaches that rhizobia use to survive under stress is the accumulation of compatible solutes, or osmolytes, such as trehalose. Trehalose is a non-reducing disaccharide and an osmolyte reported to accumulate in a range of organisms. High accumulation of trehalose in bacteroids during nodulation protects cells and proteins from osmotic shock, desiccation, and heat under drought stress. Manipulation of trehalose cell concentrations has been directly correlated with stress response in plants and other organisms, including AMF. However, the role of this compound in the tripartite symbiotic relationship is not fully explored. This review describes the biological importance and the role of trehalose in the tripartite symbiosis between plants, rhizobia, and AMF. In particular, we review the physiological functions and the molecular investigations of trehalose carried out using omics-based approaches. This review will pave the way for future studies investigating possible metabolic engineering of this biomolecule for enhancing abiotic stress tolerance in plants.
Collapse
Affiliation(s)
- Mahaveer P. Sharma
- Microbiology Section, ICAR-Indian Institute of Soybean Research, Indore, India
| | - Minakshi Grover
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Dipanti Chourasiya
- Microbiology Section, ICAR-Indian Institute of Soybean Research, Indore, India
| | - Abhishek Bharti
- Microbiology Section, ICAR-Indian Institute of Soybean Research, Indore, India
| | - Richa Agnihotri
- Microbiology Section, ICAR-Indian Institute of Soybean Research, Indore, India
| | | | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Jeffrey S. Buyer
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Sushil K. Sharma
- ICAR-National Institute of Biotic Stress Management, Raipur, India
| | - Lukas Schütz
- Department of Environmental Sciences-Botany, University of Basel, Basel, Switzerland
| | - Natarajan Mathimaran
- Department of Environmental Sciences-Botany, University of Basel, Basel, Switzerland
- M S Swaminathan Research Foundation, Chennai, India
| | - Sneh L. Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Julie M. Grossman
- Department of Horticultural Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, MN, United States
| | - Davis J. Bagyaraj
- Center for Natural Biological Resources and Community Development, Bengaluru, India
| |
Collapse
|