1
|
Sun C, He C, Zhong C, Liu S, Liu H, Luo X, Li J, Zhang Y, Guo Y, Yang B, Wang P, Deng X. Bifunctional regulators of photoperiodic flowering in short day plant rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1044790. [PMID: 36340409 PMCID: PMC9630834 DOI: 10.3389/fpls.2022.1044790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Photoperiod is acknowledged as a crucial environmental factor for plant flowering. According to different responses to photoperiod, plants were divided into short-day plants (SDPs), long-day plants (LDPs), and day-neutral plants (DNPs). The day length measurement system of SDPs is different from LDPs. Many SDPs, such as rice, have a critical threshold for day length (CDL) and can even detect changes of 15 minutes for flowering decisions. Over the last 20 years, molecular mechanisms of flowering time in SDP rice and LDP Arabidopsis have gradually clarified, which offers a chance to elucidate the differences in day length measurement between the two types of plants. In Arabidopsis, CO is a pivotal hub in integrating numerous internal and external signals for inducing photoperiodic flowering. By contrast, Hd1 in rice, the homolog of CO, promotes and prevents flowering under SD and LD, respectively. Subsequently, numerous dual function regulators, such as phytochromes, Ghd7, DHT8, OsPRR37, OsGI, OsLHY, and OsELF3, were gradually identified. This review assesses the relationship among these regulators and a proposed regulatory framework for the reversible mechanism, which will deepen our understanding of the CDL regulation mechanism and the negative response to photoperiod between SDPs and LDPs.
Collapse
Affiliation(s)
- Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Changcai He
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chao Zhong
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shihang Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hongying Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xu Luo
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuxiu Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuting Guo
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pingrong Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaojian Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Wu M, Liu H, Lin Y, Chen J, Fu Y, Luo J, Zhang Z, Liang K, Chen S, Wang F. In-Frame and Frame-Shift Editing of the Ehd1 Gene to Develop Japonica Rice With Prolonged Basic Vegetative Growth Periods. FRONTIERS IN PLANT SCIENCE 2020; 11:307. [PMID: 32265960 PMCID: PMC7096585 DOI: 10.3389/fpls.2020.00307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/03/2020] [Indexed: 05/05/2023]
Abstract
Japonica rice has become increasingly popular in China owing to its superior grain quality. Over the past decades, "indica to japonica" projects have been proposed to promote cultivation of japonica rice in low latitudes in China. Traditionally, japonica varieties were planted mainly in mid latitudes in the northeast plain and Yangtze River region. The key obstacle for introducing elite mid-latitude japonica varieties to low latitudes is the severe shortening of growth period of the japonica varieties due to their sensitivity to low-latitude short photoperiod and high temperature. Here we report development of new japonica rice with prolonged basic vegetative growth (BVG) periods for low latitudes by targeted editing the Early heading date 1 (Ehd1) gene. Using CRISPR/Cas9 system, we generated both frame-shift and/or in-frame deletion mutants in four japonica varieties, Nipponbare, Longdao16, Longdao24, and Xiushui134. When planting at low-latitude stations, the frame-shift homozygous lines exhibited significantly longer BVG periods compared with wild-types. Interestingly, we observed that minor deletion of the first few residues within the receiver domain could quantitatively impair the function of Ehd1 on activation of Hd3a and RFT1, resulting in an intermediate-long BVG period phenotype in the homozygous in-frame deletion ehd1 lines. Field investigation further showed that, both the in-frame and frame-shift lines exhibited significantly improved yield potential compared with wild-types. Our study demonstrates an effective approach to rapid breeding of elite japonica varieties with intermediate-long and long BVG periods for flexible cropping systems in diverse areas or under different seasons in southern China, and other low-latitude regions.
Collapse
Affiliation(s)
- Mingji Wu
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Huaqing Liu
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yan Lin
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jianmin Chen
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yanping Fu
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jiami Luo
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Zhujian Zhang
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Kangjing Liang
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Songbiao Chen
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Feng Wang
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
3
|
Kim SR, Torollo G, Yoon MR, Kwak J, Lee CK, Prahalada GD, Choi IR, Yeo US, Jeong OY, Jena KK, Lee JS. Loss-of-Function Alleles of Heading date 1 ( Hd1) Are Associated With Adaptation of Temperate Japonica Rice Plants to the Tropical Region. FRONTIERS IN PLANT SCIENCE 2018; 9:1827. [PMID: 30619400 PMCID: PMC6295564 DOI: 10.3389/fpls.2018.01827] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/26/2018] [Indexed: 05/11/2023]
Abstract
Adaptation of temperate japonica rice varieties to tropical regions is impeded by extremely early flowering probably due to photoperiod change from long to short. However, constant breeding efforts led to development of temperate japonica varieties adapted to tropical/subtropical regions, but the genetic factor underlying this is still elusive. We analyzed the 45 diverse rice accessions and 12 tropical-adapted temperate japonica lines for the allele types of seven major flowering genes Hd1, OsPPR37, DTH8, Ghd7, Ehd1, RFT1, and Hd3a and flowering time under three different field conditions in temperate and tropical locations. The accessions originated from the tropical/subtropical regions preferred the non-functional alleles of Hd1 and not other flowering genes. The genetic effect analysis of each gene showed that only the functional Hd1 caused early flowering in the tropical location. All 12 temperate japonica breeding lines adapted to the tropics possessed the loss-of-function alleles of Hd1 with no change of other flowering genes compared to common Korean temperate japonica varieties. A phylogenetic analysis using 2,918 SNP data points revealed that the genome status of the 12 breeding lines were very similar to Korean temperate japonica varieties. These results indicate that the functional Hd1 alleles of temperate japonica varieties induced extremely early flowering in the tropics and the non-functional hd1 alleles brought about the adaptation of temperate japonica rice to tropical regions.
Collapse
Affiliation(s)
- Sung-Ryul Kim
- Strategic Innovation Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Gideon Torollo
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Mi-Ra Yoon
- National Institute of Crop Science, Rural Development Administration, Jeonju, South Korea
| | - Jieun Kwak
- National Institute of Crop Science, Rural Development Administration, Jeonju, South Korea
| | - Choon-Ki Lee
- National Institute of Crop Science, Rural Development Administration, Jeonju, South Korea
| | - G. D. Prahalada
- Strategic Innovation Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Il-Ryong Choi
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Un-Sang Yeo
- National Institute of Crop Science, Rural Development Administration, Jeonju, South Korea
| | - O-Young Jeong
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
- National Institute of Crop Science, Rural Development Administration, Jeonju, South Korea
| | - Kshirod K. Jena
- Strategic Innovation Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Jeom-Sig Lee
- Rice Breeding Platform, International Rice Research Institute, Metro Manila, Philippines
- National Institute of Crop Science, Rural Development Administration, Jeonju, South Korea
| |
Collapse
|