1
|
Bekkouche I, Kuznetsova MN, Rejepov DT, Vetcher AA, Shishonin AY. Recent Advances in DNA Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2449. [PMID: 37686956 PMCID: PMC10490369 DOI: 10.3390/nano13172449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023]
Abstract
Applications of DNA-containing nanomaterials (DNA-NMs) in science and technology are currently attracting increasing attention in the fields of medicine, environment, engineering, etc. Such objects have become important for various branches of science and industries due to their outstanding characteristics such as small size, high controllability, clustering actions, and strong permeability. For these reasons, DNA-NMs deserve a review with respect to their recent advancements. On the other hand, precise cluster control, targeted drug distribution in vivo, and cellular micro-nano operation remain as problems. This review summarizes the recent progress in DNA-NMs and their crossover and integration into multiple disciplines (including in vivo/in vitro, microcircles excisions, and plasmid oligomers). We hope that this review will motivate relevant practitioners to generate new research perspectives and boost the advancement of nanomanipulation.
Collapse
Affiliation(s)
- Incherah Bekkouche
- Nanotechnology Scientific and Educational Center, Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia n.a. P. Lumumba (RUDN), Miklukho-Maklaya St. 6, Moscow 117198, Russia; (M.N.K.); (D.T.R.)
| | - Maria N. Kuznetsova
- Nanotechnology Scientific and Educational Center, Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia n.a. P. Lumumba (RUDN), Miklukho-Maklaya St. 6, Moscow 117198, Russia; (M.N.K.); (D.T.R.)
| | - Dovlet T. Rejepov
- Nanotechnology Scientific and Educational Center, Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia n.a. P. Lumumba (RUDN), Miklukho-Maklaya St. 6, Moscow 117198, Russia; (M.N.K.); (D.T.R.)
| | - Alexandre A. Vetcher
- Nanotechnology Scientific and Educational Center, Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia n.a. P. Lumumba (RUDN), Miklukho-Maklaya St. 6, Moscow 117198, Russia; (M.N.K.); (D.T.R.)
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5, Yasnogorskaya Str., Moscow 117588, Russia;
| | - Alexander Y. Shishonin
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5, Yasnogorskaya Str., Moscow 117588, Russia;
| |
Collapse
|
2
|
Vetcher AA, Stanishevskiy YM. DNA microcircles - The promising tool for in vivo studies of the behavior of non-canonical DNA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 169-170:84-88. [PMID: 35219771 DOI: 10.1016/j.pbiomolbio.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The paper discusses the reasons for the resurrection of the term DNA microcircles through the change of its definition to "topologically closed DNA circles with the length less than 1 Kbp" from the entire population of circular DNA that holds the name of minicircles. The possible applications of such tool for in vivo studies of non-canonical DNA are also discussed. Prospective for in vivo and in vitro studies of non-canonical DNA cloned into microcircles are demonstrated. A method of stepwise elongation or shortening of plasmids is discussed.
Collapse
Affiliation(s)
- Alexandre A Vetcher
- IBCTN of the Peoples' Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation; Complementary and Integrative Health Clinic of Dr. Shishonin, 5 Yasnogorskaya Str, Moscow, 117588, Russian Federation.
| | - Yaroslav M Stanishevskiy
- IBCTN of the Peoples' Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| |
Collapse
|
3
|
Jakobsen JE, Johansen MG, Schmidt M, Liu Y, Li R, Callesen H, Melnikova M, Habekost M, Matrone C, Bouter Y, Bayer TA, Nielsen AL, Duthie M, Fraser PE, Holm IE, Jørgensen AL. Expression of the Alzheimer's Disease Mutations AβPP695sw and PSEN1M146I in Double-Transgenic Göttingen Minipigs. J Alzheimers Dis 2018; 53:1617-30. [PMID: 27540966 DOI: 10.3233/jad-160408] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mutations in the amyloid-β protein precursor gene (AβPP), the presenilin 1 gene (PSEN1) or the presenilin 2 gene (PSEN2) that increase production of the AβPP-derived peptide Aβ42 cause early-onset Alzheimer's disease. Rodent models of the disease show that further increase in Aβ42 production and earlier brain pathology can be obtained by coexpressing AβPP and PSEN1 mutations. To generate such elevated Aβ42 level in a large animal model, we produced Göttingen minipigs carrying in their genome one copy of a human PSEN1 cDNA with the Met146Ile (PSEN1M146I) mutation and three copies of a human AβPP695 cDNA with the Lys670Asn/Met671Leu (AβPPsw) double-mutation. Both transgenes were expressed in fibroblasts and in the brain, and their respective proteins were processed normally. Immunohistochemical staining with Aβ42-specific antibodies detected intraneuronal accumulation of Aβ42 in brains from a 10- and an 18-month-old pig. Such accumulation may represent an early event in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Jannik E Jakobsen
- Department of Biomedicine (East), Aarhus University, Aarhus C, Denmark
| | | | - Mette Schmidt
- Department of Large Animal Sciences/Reproduction, University of Copenhagen, Frederiksberg C, Denmark
| | - Ying Liu
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Rong Li
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Henrik Callesen
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | | | - Mette Habekost
- Department of Biomedicine (East), Aarhus University, Aarhus C, Denmark
| | - Carmela Matrone
- Department of Biomedicine (East), Aarhus University, Aarhus C, Denmark
| | - Yvonne Bouter
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Thomas A Bayer
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Monika Duthie
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Ida E Holm
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark.,Department of Pathology, Randers Hospital, Randers, Denmark
| | | |
Collapse
|
4
|
Hacobian A, Hercher D. Pushing the Right Buttons: Improving Efficacy of Therapeutic DNA Vectors. TISSUE ENGINEERING PART B-REVIEWS 2017; 24:226-239. [PMID: 29264951 DOI: 10.1089/ten.teb.2017.0353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gene therapy represents a potent therapeutical application for regenerative medicine. So far, viral and nonviral approaches suffer from major drawbacks hindering efficient gene therapeutic applicability: the immunogenicity of viral systems on the one hand, and the low gene transfer efficiency of nonviral systems on the other hand. Therefore, there is a high demand for improvements of therapeutical systems at several levels. This review summarizes different DNA vector modifications to enhance biological efficacy and efficiency of therapeutical vectors, aiming for low toxicity, high specificity, and biological efficacy-the cornerstones for successful translation of gene therapy into the clinic. We aim to provide a step-by-step instruction to optimize their vectors to achieve the desired outcome of gene therapy. Our review provides the means to either construct a potent gene therapeutic vector de novo or to specifically address a bottleneck in the chain of events mandatory for therapeutic success. Although most of the introduced techniques can be translated into different areas, this review primarily addresses improvements for applications in transient gene therapy in the field of tissue engineering.
Collapse
Affiliation(s)
- Ara Hacobian
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Department of Molecular Biology, AUVA Research Center, The Austrian Cluster for Tissue Regeneration , Vienna, Austria
| | - David Hercher
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Department of Molecular Biology, AUVA Research Center, The Austrian Cluster for Tissue Regeneration , Vienna, Austria
| |
Collapse
|
5
|
Callesen MM, Berthelsen MF, Lund S, Füchtbauer AC, Füchtbauer EM, Jakobsen JE. Recombinase-Mediated Cassette Exchange (RMCE)-in Reporter Cell Lines as an Alternative to the Flp-in System. PLoS One 2016; 11:e0161471. [PMID: 27541869 PMCID: PMC4991790 DOI: 10.1371/journal.pone.0161471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/06/2016] [Indexed: 11/18/2022] Open
Abstract
Recombinase mediated cassette exchange (RMCE) is a powerful tool for targeted insertion of transgenes. Here we describe non-proprietary 'RMCE-in' cell lines as an alternative to the 'Flp-in' system and cell lines. RMCE-in cell lines offer a number of advantages including increased efficiency of integration of the genetic element of interest (GEI) at a single docking site, lack of bacterial backbone at the docking site both before and after GEI integration, removal of selection and visual markers initially present at the docking site upon GEI integration and the possibility to validate GEI integration by loss of a red fluorescence reporter. Moreover, the RMCE-in cell lines are compatible with GEI donors used for the Flp-in system. We demonstrate a three-step procedure for generating RMCE-in cell lines, (I) RMCE-in transposon and SB10 transposase transfection, (II) clone isolation, and (III) selecting single integrated clones with highest RFP level, which could in principle be used to turn any cell line into an RMCE-in cell line. The RMCE-in system was used as a proof of concept to produce three new RMCE-in cell lines using HEK293, HeLa, and murine embryonic stem (mES) cells. The established RMCE-in cell lines and vector are freely available from the ATCC cell bank and Addgene respectively.
Collapse
Affiliation(s)
- Morten M. Callesen
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus C, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus N, Denmark
| | - Martin F. Berthelsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus C, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus N, Denmark
| | - Sira Lund
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus C, Denmark
| | | | | | - Jannik E. Jakobsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus C, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
6
|
Dong Y, Aied A, Li J, Wang Q, Hu X, Wang W. An in vitro approach for production of non-scar minicircle DNA vectors. J Biotechnol 2013; 166:84-7. [DOI: 10.1016/j.jbiotec.2013.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/11/2013] [Accepted: 04/17/2013] [Indexed: 10/26/2022]
|
7
|
Generation of minipigs with targeted transgene insertion by recombinase-mediated cassette exchange (RMCE) and somatic cell nuclear transfer (SCNT). Transgenic Res 2012; 22:709-23. [PMID: 23111619 PMCID: PMC3712138 DOI: 10.1007/s11248-012-9671-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 10/22/2012] [Indexed: 11/23/2022]
Abstract
Targeted transgenesis using site-specific recombinases is an attractive method to create genetically modified animals as it allows for integration of the transgene in a pre-selected transcriptionally active genomic site. Here we describe the application of recombinase-mediated cassette exchange (RMCE) in cells from a Göttingen minipig with four RMCE acceptor loci, each containing a green fluorescence protein (GFP) marker gene driven by a human UbiC promoter. The four RMCE acceptor loci segregated independent of each other, and expression profiles could be determined in various tissues. Using minicircles in RMCE in fibroblasts with all four acceptor loci and followed by SCNT, we produced piglets with a single copy of a transgene incorporated into one of the transcriptionally active acceptor loci. The transgene, consisting of a cDNA of the Alzheimer’s disease-causing gene PSEN1M146I driven by an enhanced human UbiC promoter, had an expression profile in various tissues similar to that of the GFP marker gene. The results show that RMCE can be done in a pre-selected transcriptionally active acceptor locus for targeted transgenesis in pigs.
Collapse
|
8
|
Sølvsten C, Nielsen AL. FMR1 CGG repeat lengths mediate different regulation of reporter gene expression in comparative transient and locus specific integration assays. Gene 2011; 486:15-22. [PMID: 21767618 DOI: 10.1016/j.gene.2011.06.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/24/2011] [Accepted: 06/30/2011] [Indexed: 01/10/2023]
Abstract
The Fragile X mental retardation (FMR1) gene contains a polymorphic CGG trinucleotide repeat in the 5'-untranslated region. The repeat length in the normal population is between 5 and 54 repeats. A repeat length between 55 and 200 is defined as the pre-mutation repeat size. Elderly carriers of the pre-mutation can develop the progressive neurodegenerative disease Fragile X-associated tremor/ataxia syndrome (FXTAS). In FXTAS the FMR1 mRNA levels are increased and it is hypothesized that FXTAS is caused by a RNA gain of function mechanism. Repeat lengths beyond 200 CGGs are defined as the full-mutation and causes Fragile X-syndrome which is the most common inherited form of mental retardation. The full-mutation results in the absence of the FMR1 mRNA and protein, FMRP, through abnormal CpG methylation and FMR1 gene silencing. In this report we have used the Flp-In T-REx system to generate locus directed stable cell lines harboring the FMR1 5'-UTR with varying CGG repeat lengths in front of a reporter gene. By this system the influence of various CGG repeat lengths for reporter gene expression can be comparatively examined in cell lines where the only genetic difference is CGG repeat lengths. In such cell lines we find that a full-mutation CGG repeat confers inhibition of reporter gene expression, whereas a pre-mutation CGG repeat did not increase reporter gene expression. In transient transfection assays using the same expression vectors the pre-mutation and full-mutation CGG repeats increased reporter gene expression. This study shows that locus directed integration of model FMR1 CGG transgenes could be a new basic tool to further elucidating the basic molecular mechanisms behind transcriptional deregulation of the FMR1 gene in fragile X-syndrome and FXTAS.
Collapse
|