1
|
Lee S, Kim H, Aqsa, Jeung K, Won M, Ro H. DAPE cloning with modified primers for producing designated lengths of 3' single-stranded ends in PCR products. PLoS One 2025; 20:e0318015. [PMID: 39946422 PMCID: PMC11825038 DOI: 10.1371/journal.pone.0318015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/07/2025] [Indexed: 02/16/2025] Open
Abstract
For in vitro DNA assembly, enzymes with exonuclease activities have been utilized to generate relatively long recessed ends on DNA fragments, which can anneal to other DNA fragments if they have complementary nucleotide sequences. The combined construct can be directly delivered to competent cells, where the gaps and nicks between the fragments are completely rectified. We introduce a versatile sequence- and ligation-independent cloning (SLIC) method called 'DNA Assembly with Phosphorothioate (PT) and T5 Exonuclease' (DAPE), which generates precise lengths of 3' overhangs at both ends of linearized DNA. In contrast to conventional SLIC techniques, which are not suitable for cloning DNA fragments smaller than 50 base pairs (bp) due to overzealous exonuclease activity, such as with gRNA and epitope tags, DAPE can efficiently and precisely assemble several fragments in a single reaction regardless of the size of the DNA. Thus, DAPE, as an advanced toolkit for DNA cloning and synthetic biology, may further expedite the construction of more elaborate multi-gene circuitry.
Collapse
Affiliation(s)
- Seoee Lee
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea (ROK)
| | - Hyunyoung Kim
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea (ROK)
| | - Aqsa
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea (ROK)
| | - Kwangjin Jeung
- Biotechnology Process Engineering Center, KRIBB, Cheongju, Korea (ROK)
| | - Minho Won
- Biotechnology Process Engineering Center, KRIBB, Cheongju, Korea (ROK)
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Korea (ROK)
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea (ROK)
| |
Collapse
|
2
|
Wang X, Li A, Li X, Cui H. Empowering Protein Engineering through Recombination of Beneficial Substitutions. Chemistry 2024; 30:e202303889. [PMID: 38288640 DOI: 10.1002/chem.202303889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Indexed: 02/24/2024]
Abstract
Directed evolution stands as a seminal technology for generating novel protein functionalities, a cornerstone in biocatalysis, metabolic engineering, and synthetic biology. Today, with the development of various mutagenesis methods and advanced analytical machines, the challenge of diversity generation and high-throughput screening platforms is largely solved, and one of the remaining challenges is: how to empower the potential of single beneficial substitutions with recombination to achieve the epistatic effect. This review overviews experimental and computer-assisted recombination methods in protein engineering campaigns. In addition, integrated and machine learning-guided strategies were highlighted to discuss how these recombination approaches contribute to generating the screening library with better diversity, coverage, and size. A decision tree was finally summarized to guide the further selection of proper recombination strategies in practice, which was beneficial for accelerating protein engineering.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Anni Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Haiyang Cui
- School of Life Sciences, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| |
Collapse
|
3
|
Recombination of Single Beneficial Substitutions Obtained from Protein Engineering by Computer-Assisted Recombination (CompassR). Methods Mol Biol 2022; 2461:9-18. [PMID: 35727441 DOI: 10.1007/978-1-0716-2152-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A large number of beneficial substitutions can be obtained from a successful directed enzyme evolution campaign and/or (semi)rational design. It is expected that the recombination of some beneficial substitutions leads to a much higher degree of performance through synergistic effect. However, systematic recombination studies show that poorly performing variants are often obtained after recombination of three to four individual beneficial substitutions and this limits protein engineers to exploit nature's potential in generating better performing enzymes. Computer-assisted Recombination (CompassR) strategy allows the recombination of identified beneficial substitutions in an effective and efficient manner in order to generate active enzymes with improved performance. Here, we describe in detail the CompassR procedure with an example of recombining four substitutions and discuss some important practical issues that should be considered (such as the selection of protein structures, number of FoldX runs, evaluation of calculations) for application of the CompassR rule. The core part of this protocol (system setup, ΔΔGfold calculation, and CompassR application) is transferable to other enzymes and any recombination of single beneficial substitutions.
Collapse
|
4
|
Intrathymic differentiation of natural antibody-producing plasma cells in human neonates. Nat Commun 2021; 12:5761. [PMID: 34599177 PMCID: PMC8486820 DOI: 10.1038/s41467-021-26069-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
The thymus is a central lymphoid organ primarily responsible for the development of T cells. A small proportion of B cells, however, also reside in the thymus to assist negative selection of self-reactive T cells. Here we show that the thymus of human neonates contains a consistent contingent of CD138+ plasma cells, producing all classes and subclasses of immunoglobulins with the exception of IgD. These antibody-secreting cells are part of a larger subset of B cells that share the expression of signature genes defining mouse B1 cells, yet lack the expression of complement receptors CD21 and CD35. Data from single-cell transcriptomic, clonal correspondence and in vitro differentiation assays support the notion of intrathymic CD138+ plasma cell differentiation, alongside other B cell subsets with distinctive molecular phenotypes. Lastly, neonatal thymic plasma cells also include clones reactive to commensal and pathogenic bacteria that commonly infect children born with antibody deficiency. Thus, our findings point to the thymus as a source of innate humoral immunity in human neonates.
Collapse
|
5
|
Herrmann KR, Hofmann I, Jungherz D, Wittwer M, Infanzón B, Hamer SN, Davari MD, Ruff AJ, Schwaneberg U. Generation of phytase chimeras with low sequence identities and improved thermal stability. J Biotechnol 2021; 339:14-21. [PMID: 34271055 DOI: 10.1016/j.jbiotec.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/25/2021] [Accepted: 07/09/2021] [Indexed: 11/18/2022]
Abstract
Being able to recombine more than two genes with four or more crossover points in a sequence independent manner is still a challenge in protein engineering and limits our capabilities in tailoring enzymes for industrial applications. By computational analysis employing multiple sequence alignments and homology modeling, five fragments of six phytase genes (sequence identities 31-64 %) were identified and efficiently recombined through phosphorothioate-based cloning using the PTRec method. By combinatorial recombination, functional phytase chimeras containing fragments of up to four phytases were obtained. Two variants (PTRec 74 and PTRec 77) with up to 32 % improved residual activity (90 °C, 60 min) and retained specific activities of > 1100 U/mg were identified. Both variants are composed of fragments from the phytases of Citrobacter braakii, Hafnia alvei and Yersinia mollaretii. They exhibit sequence identities of ≤ 80 % to their parental enzymes, highlighting the great potential of DNA recombination strategies to generate new enzymes with low sequences identities that offer opportunities for property right claims.
Collapse
Affiliation(s)
- Kevin R Herrmann
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Isabell Hofmann
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Dennis Jungherz
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Malte Wittwer
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Belén Infanzón
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Stefanie Nicole Hamer
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Mehdi D Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Anna Joëlle Ruff
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany.
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany; DWI-Leibniz Institut für Interaktive Materialien, Forckenbeckstraße 50, 52056, Aachen, Germany.
| |
Collapse
|
6
|
Cui H, Stadtmüller THJ, Jiang Q, Jaeger K, Schwaneberg U, Davari MD. How to Engineer Organic Solvent Resistant Enzymes: Insights from Combined Molecular Dynamics and Directed Evolution Study. ChemCatChem 2020. [DOI: 10.1002/cctc.202000422] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Haiyang Cui
- Lehrstuhl für Biotechnologie RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Tom H. J. Stadtmüller
- Lehrstuhl für Biotechnologie RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Qianjia Jiang
- Lehrstuhl für Biotechnologie RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme Technology Heinrich Heine University Düsseldorf and Research Center Jülich Wilhelm Johnen Strasse 52426 Jülich Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie RWTH Aachen University Worringerweg 3 52074 Aachen Germany
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstraße 50 52074 Aachen Germany
| | - Mehdi D. Davari
- Lehrstuhl für Biotechnologie RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| |
Collapse
|
7
|
Yamamoto Y, Terai T, Kumachi S, Nemoto N. In Vitro Construction of Large-scale DNA Libraries from Fragments Containing Random Regions using Deoxyinosine-containing Oligonucleotides and Endonuclease V. ACS COMBINATORIAL SCIENCE 2020; 22:165-171. [PMID: 32212679 DOI: 10.1021/acscombsci.9b00167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efficient and precise construction of DNA libraries is a fundamental starting point for directed evolution of polypeptides. Recently, several in vitro selection methods have been reported that do not rely on cells for protein expression, where peptide libraries in the order of 1013 species are used for in vitro affinity selection. To maximize their potential, simple yet versatile construction of DNA libraries from several fragments containing random regions without bacterial transformation is essential. To address this issue, we herein propose a novel DNA construction methodology based on the use of polymerase chain reaction (PCR) primers containing a single deoxyinosine (I) residue near their 5' end. Treatment of the PCR products with endonuclease V generates 3' overhangs with customized lengths and sequences, which can be ligated accurately and efficiently with other fragments having exactly complementary overhangs. As a proof of concept, we constructed an artificial gene library of single-domain antibodies from four DNA fragments.
Collapse
Affiliation(s)
- Yasuhide Yamamoto
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama City, 338-8570, Japan
| | - Takuya Terai
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama City, 338-8570, Japan
| | - Shigefumi Kumachi
- Epsilon Molecular Engineering, Inc., 255 Shimo-okubo, Sakura-ku, Saitama City 338-8570, Saitama, Japan
| | - Naoto Nemoto
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama City, 338-8570, Japan
- Epsilon Molecular Engineering, Inc., 255 Shimo-okubo, Sakura-ku, Saitama City 338-8570, Saitama, Japan
| |
Collapse
|
8
|
Cui H, Cao H, Cai H, Jaeger K, Davari MD, Schwaneberg U. Computer-Assisted Recombination (CompassR) Teaches us How to Recombine Beneficial Substitutions from Directed Evolution Campaigns. Chemistry 2020; 26:643-649. [PMID: 31553080 PMCID: PMC7003928 DOI: 10.1002/chem.201903994] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Indexed: 01/09/2023]
Abstract
A main remaining challenge in protein engineering is how to recombine beneficial substitutions. Systematic recombination studies show that poorly performing variants are usually obtained after recombination of 3 to 4 beneficial substitutions. This limits researchers in exploiting nature's potential in generating better enzymes. The Computer-assisted Recombination (CompassR) strategy provides a selection guide for beneficial substitutions that can be recombined to gradually improve enzyme performance by analysis of the relative free energy of folding (ΔΔGfold ). The performance of CompassR was evaluated by analysis of 84 recombinants located on 13 positions of Bacillus subtilis lipase A. The finally obtained variant F17S/V54K/D64N/D91E had a 2.7-fold improved specific activity in 18.3 % (v/v) 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]). In essence, the deducted CompassR rule allows recombination of beneficial substitutions in an iterative manner and empowers researchers to generate better enzymes in a time-efficient manner.
Collapse
Affiliation(s)
- Haiyang Cui
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
| | - Hao Cao
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
- Beijing Bioprocess Key Laboratory and College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Haiying Cai
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
| | - Karl‐Erich Jaeger
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
- Institute of Molecular Enzyme TechnologyHeinrich Heine University Düsseldorf and Research Center Jülich, Wilhelm Johnen Strasse52426JülichGermany
| | - Mehdi D. Davari
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
| | - Ulrich Schwaneberg
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
- DWI Leibniz-Institute for Interactive MaterialsForckenbeckstrasse 5052074AachenGermany
| |
Collapse
|
9
|
Yang J, Ruff AJ, Hamer SN, Cheng F, Schwaneberg U. Screening through the PLICable promoter toolbox enhances protein production in Escherichia coli. Biotechnol J 2016; 11:1639-1647. [PMID: 27753230 DOI: 10.1002/biot.201600270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/26/2016] [Accepted: 10/17/2016] [Indexed: 12/13/2022]
Abstract
Escherichia coli is a common host for recombinant protein production in which production titers are highly dependent on the employed expression system. Promoters are thereby a key element to control gene expression levels. In this study, a novel PLICable promoter toolbox was developed which enables in a single cloning step and after a screening experiment to identify out of ten IPTG-inducible promoters (T7, A3, lpp, tac, pac, Sp6, lac, npr, trc and syn) the most suitable one for high level protein production. The target gene is cloned under the control of different promoters in a single and efficient cloning step using the ligase-free cloning method PLICing (phosphorothioate-based ligase-independent gene cloning). The promoter toolbox was firstly validated using three well producible proteins (a cellulase from a metagenome library, a phytase from Yersinia mollaretii and an alcohol dehydrogenase from Pseudomonas putida) and then applied to two enzymes (3D1 DNA polymerase and glutamate dehydrogenase mutant) which are poorly produced in E. coli. By applying our PLICable pET-promoter toolbox, the authors were able to increase production by two-fold for 3D1 DNA polymerase (lac promoter) and 29-fold for glutamate dehydrogenase mutant H52Y (trc promoter).
Collapse
Affiliation(s)
- Jianhua Yang
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany
| | - Anna Joëlle Ruff
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany
| | | | - Feng Cheng
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany.,DWI-Leibniz Institut für Interaktive Materialien, Aachen, Germany
| |
Collapse
|
10
|
Testing the causality between CYP9M10 and pyrethroid resistance using the TALEN and CRISPR/Cas9 technologies. Sci Rep 2016; 6:24652. [PMID: 27095599 PMCID: PMC4837413 DOI: 10.1038/srep24652] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/04/2016] [Indexed: 01/07/2023] Open
Abstract
Recently-emerging genome editing technologies have enabled targeted gene knockout experiments even in non-model insect species. For studies on insecticide resistance, genome editing technologies offer some advantages over the conventional reverse genetic technique, RNA interference, for testing causal relationships between genes of detoxifying enzymes and resistance phenotypes. There were relatively abundant evidences indicating that the overexpression of a cytochrome P450 gene CYP9M10 confers strong pyrethroid resistance in larvae of the southern house mosquito Culex quinquefasciatus. However, reverse genetic verification has not yet been obtained because of the technical difficulty of microinjection into larvae. Here, we tested two genome editing technologies, transcription activator-like effector nucleases (TALEN)s and clustered regularly interspaced short palindromic repeats (CRISPR/Cas9), to disrupt CYP9M10 in a resistant strain of C. quinquefasciatus. Additionally, we developed a novel, effective approach to construct a TALE using the chemical cleavage of phosphorothioate inter-nucleotide linkages in the level 1 assembly. Both TALEN and CRISPR/Cas9 induced frame-shifting mutations in one or all copies of CYP9M10 in a pyrethroid-resistant strain. A line fixed with a completely disrupted CYP9M10 haplotype showed more than 100-fold reduction in pyrethroid resistance in the larval stage.
Collapse
|
11
|
van Summeren-Wesenhagen PV, Voges R, Dennig A, Sokolowsky S, Noack S, Schwaneberg U, Marienhagen J. Combinatorial optimization of synthetic operons for the microbial production of p-coumaryl alcohol with Escherichia coli. Microb Cell Fact 2015; 14:79. [PMID: 26062542 PMCID: PMC4464236 DOI: 10.1186/s12934-015-0274-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/08/2015] [Indexed: 01/03/2023] Open
Abstract
Background Microbes are extensively engineered to produce compounds of biotechnological or pharmaceutical interest. However, functional integration of synthetic pathways into the respective host cell metabolism and optimization of heterologous gene expression for achieving high product titers is still a challenging task. In this manuscript, we describe the optimization of a tetracistronic operon for the microbial production of the plant-derived phenylpropanoid p-coumaryl alcohol in Escherichia coli. Results Basis for the construction of a p-coumaryl alcohol producing strain was the development of Operon-PLICing as method for the rapid combinatorial assembly of synthetic operons. This method is based on the chemical cleavage reaction of phosphorothioate bonds in an iodine/ethanol solution to generate complementary, single-stranded overhangs and subsequent hybridization of multiple DNA-fragments. Furthermore, during the assembly of these DNA-fragments, Operon-PLICing offers the opportunity for balancing gene expression of all pathway genes on the level of translation for maximizing product titers by varying the spacing between the Shine-Dalgarno sequence and START codon. With Operon-PLICing, 81 different clones, each one carrying a different p-coumaryl alcohol operon, were individually constructed and screened for p-coumaryl alcohol formation within a few days. The absolute product titer of the best five variants ranged from 48 to 52 mg/L p-coumaryl alcohol without any further optimization of growth and production conditions. Conclusions Operon-PLICing is sequence-independent and thus does not require any specific recognition or target sequences for enzymatic activities since all hybridization sites can be arbitrarily selected. In fact, after PCR-amplification, no endonucleases or ligases, frequently used in other methods, are needed. The modularity, simplicity and robustness of Operon-PLICing would be perfectly suited for an automation of cloning in the microtiter plate format. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0274-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philana V van Summeren-Wesenhagen
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie and Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Raphael Voges
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie and Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Alexander Dennig
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria.
| | - Sascha Sokolowsky
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie and Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Stephan Noack
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie and Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie and Bioeconomy Science Center (BioSC), RWTH Aachen University, Worringer Weg 1, 52056, Aachen, Germany.
| | - Jan Marienhagen
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie and Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
12
|
Cheng F, Zhu L, Schwaneberg U. Directed evolution 2.0: improving and deciphering enzyme properties. Chem Commun (Camb) 2015; 51:9760-72. [DOI: 10.1039/c5cc01594d] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A KnowVolution: knowledge gaining directed evolution including four phases is proposed in this feature article, which generates improved enzyme variants and molecular understanding.
Collapse
Affiliation(s)
- Feng Cheng
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Leilei Zhu
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI-Leibniz Institute for Interactive Materials
| |
Collapse
|
13
|
Abstract
ABSTRACT
Since the discovery of restriction enzymes and the generation of the first recombinant DNA molecule over 40 years ago, molecular biology has evolved into a multidisciplinary field that has democratized the conversion of a digitized DNA sequence stored in a computer into its biological counterpart, usually as a plasmid, stored in a living cell. In this article, we summarize the most relevant tools that allow the swift assembly of DNA sequences into useful plasmids for biotechnological purposes. We cover the main components and stages in a typical DNA assembly workflow, namely
in silico
design,
de novo
gene synthesis, and
in vitro
and
in vivo
sequence assembly methodologies.
Collapse
|
14
|
Uhlenbrock F, Hagemann-Jensen M, Kehlet S, Andresen L, Pastorekova S, Skov S. The NKG2D ligand ULBP2 is specifically regulated through an invariant chain-dependent endosomal pathway. THE JOURNAL OF IMMUNOLOGY 2014; 193:1654-65. [PMID: 25024379 DOI: 10.4049/jimmunol.1303275] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Soluble ULBP2 is a marker for poor prognosis in several types of cancer. In this study we demonstrate that both soluble and cell surface-bound ULBP2 is transported via a so far unrecognized endosomal pathway. ULBP2 surface expression, but not MICA/B, could specifically be targeted and retained by affecting endosomal/lysosomal integrity and protein kinase C activity. The invariant chain was further essential for endosomal transport of ULBP2. This novel pathway was identified through screening experiments by which methylselenic acid was found to possess notable NKG2D ligand regulatory properties. The protein kinase C inhibitor methylselenic acid induced MICA/B surface expression but dominantly blocked ULBP2 surface transport. Remarkably, by targeting this novel pathway we could specifically block the production of soluble ULBP2 from different, primary melanomas. Our findings strongly suggest that the endosomal transport pathway constitutes a novel therapeutic target for ULBP2-producing tumors.
Collapse
Affiliation(s)
- Franziska Uhlenbrock
- Section for Experimental Animal Models, Laboratory of Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark; and
| | - Michael Hagemann-Jensen
- Section for Experimental Animal Models, Laboratory of Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark; and
| | - Stephanie Kehlet
- Section for Experimental Animal Models, Laboratory of Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark; and
| | - Lars Andresen
- Section for Experimental Animal Models, Laboratory of Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark; and
| | - Silvia Pastorekova
- Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic
| | - Søren Skov
- Section for Experimental Animal Models, Laboratory of Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark; and
| |
Collapse
|
15
|
Cao B, Chen C, DeMott MS, Cheng Q, Clark TA, Xiong X, Zheng X, Butty V, Levine SS, Yuan G, Boitano M, Luong K, Song Y, Zhou X, Deng Z, Turner SW, Korlach J, You D, Wang L, Chen S, Dedon PC. Genomic mapping of phosphorothioates reveals partial modification of short consensus sequences. Nat Commun 2014; 5:3951. [PMID: 24899568 DOI: 10.1038/ncomms4951] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 04/25/2014] [Indexed: 01/29/2023] Open
Abstract
Bacterial phosphorothioate (PT) DNA modifications are incorporated by Dnd proteins A-E and often function with DndF-H as a restriction-modification (R-M) system, as in Escherichia coli B7A. However, bacteria such as Vibrio cyclitrophicus FF75 lack dndF-H, which points to other PT functions. Here we report two novel, orthogonal technologies to map PTs across the genomes of B7A and FF75 with >90% agreement: single molecule, real-time sequencing and deep sequencing of iodine-induced cleavage at PT (ICDS). In B7A, we detect PT on both strands of GpsAAC/GpsTTC motifs, but with only 12% of 40,701 possible sites modified. In contrast, PT in FF75 occurs as a single-strand modification at CpsCA, again with only 14% of 160,541 sites modified. Single-molecule analysis indicates that modification could be partial at any particular genomic site even with active restriction by DndF-H, with direct interaction of modification proteins with GAAC/GTTC sites demonstrated with oligonucleotides. These results point to highly unusual target selection by PT-modification proteins and rule out known R-M mechanisms.
Collapse
Affiliation(s)
- Bo Cao
- 1] State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200233, China [2] Department of Biological Engineering, Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3]
| | - Chao Chen
- 1] Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China [2]
| | - Michael S DeMott
- 1] Department of Biological Engineering, Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2]
| | - Qiuxiang Cheng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Tyson A Clark
- Pacific Biosciences, Menlo Park, California 94025, USA
| | - Xiaolin Xiong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaoqing Zheng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Vincent Butty
- Department of Biological Engineering, Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Stuart S Levine
- Department of Biological Engineering, Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - George Yuan
- Pacific Biosciences, Menlo Park, California 94025, USA
| | | | - Khai Luong
- Pacific Biosciences, Menlo Park, California 94025, USA
| | - Yi Song
- Pacific Biosciences, Menlo Park, California 94025, USA
| | - Xiufen Zhou
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200233, China
| | | | - Jonas Korlach
- Pacific Biosciences, Menlo Park, California 94025, USA
| | - Delin You
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Peter C Dedon
- Department of Biological Engineering, Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
16
|
Zou R, Zhou K, Stephanopoulos G, Too HP. Combinatorial engineering of 1-deoxy-D-xylulose 5-phosphate pathway using cross-lapping in vitro assembly (CLIVA) method. PLoS One 2013; 8:e79557. [PMID: 24223968 PMCID: PMC3818232 DOI: 10.1371/journal.pone.0079557] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/02/2013] [Indexed: 11/18/2022] Open
Abstract
The ability to assemble multiple fragments of DNA into a plasmid in a single step is invaluable to studies in metabolic engineering and synthetic biology. Using phosphorothioate chemistry for high efficiency and site specific cleavage of sequences, a novel ligase independent cloning method (cross-lapping in vitro assembly, CLIVA) was systematically and rationally optimized in E. coli. A series of 16 constructs combinatorially expressing genes encoding enzymes in the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway were assembled using multiple DNA modules. A plasmid (21.6 kb) containing 16 pathway genes, was successfully assembled from 7 modules with high efficiency (2.0 x 10(3) cfu/ µg input DNA) within 2 days. Overexpressions of these constructs revealed the unanticipated inhibitory effects of certain combinations of genes on the production of amorphadiene. Interestingly, the inhibitory effects were correlated to the increase in the accumulation of intracellular methylerythritol cyclodiphosphate (MEC), an intermediate metabolite in the DXP pathway. The overexpression of the iron sulfur cluster operon was found to modestly increase the production of amorphadiene. This study demonstrated the utility of CLIVA in the assembly of multiple fragments of DNA into a plasmid which enabled the rapid exploration of biological pathways.
Collapse
Affiliation(s)
- Ruiyang Zou
- Chemical and Pharmaceutical Engineering, Singapore-MIT Alliance, Singapore, Singapore
| | - Kang Zhou
- Chemical and Pharmaceutical Engineering, Singapore-MIT Alliance, Singapore, Singapore
| | - Gregory Stephanopoulos
- Chemical and Pharmaceutical Engineering, Singapore-MIT Alliance, Singapore, Singapore
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Heng Phon Too
- Chemical and Pharmaceutical Engineering, Singapore-MIT Alliance, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
17
|
Tee KL, Wong TS. Polishing the craft of genetic diversity creation in directed evolution. Biotechnol Adv 2013; 31:1707-21. [PMID: 24012599 DOI: 10.1016/j.biotechadv.2013.08.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/31/2013] [Accepted: 08/31/2013] [Indexed: 12/25/2022]
Abstract
Genetic diversity creation is a core technology in directed evolution where a high quality mutant library is crucial to its success. Owing to its importance, the technology in genetic diversity creation has seen rapid development over the years and its application has diversified into other fields of scientific research. The advances in molecular cloning and mutagenesis since 2008 were reviewed. Specifically, new cloning techniques were classified based on their principles of complementary overhangs, homologous sequences, overlapping PCR and megaprimers and the advantages, drawbacks and performances of these methods were highlighted. New mutagenesis methods developed for random mutagenesis, focused mutagenesis and DNA recombination were surveyed. The technical requirements of these methods and the mutational spectra were compared and discussed with references to commonly used techniques. The trends of mutant library preparation were summarised. Challenges in genetic diversity creation were discussed with emphases on creating "smart" libraries, controlling the mutagenesis spectrum and specific challenges in each group of mutagenesis methods. An outline of the wider applications of genetic diversity creation includes genome engineering, viral evolution, metagenomics and a study of protein functions. The review ends with an outlook for genetic diversity creation and the prospective developments that can have future impact in this field.
Collapse
Affiliation(s)
- Kang Lan Tee
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, England, United Kingdom
| | | |
Collapse
|
18
|
Ruff AJ, Dennig A, Schwaneberg U. To get what we aim for - progress in diversity generation methods. FEBS J 2013; 280:2961-78. [DOI: 10.1111/febs.12325] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 01/06/2023]
Affiliation(s)
- Anna J. Ruff
- Lehrstuhl für Biotechnologie; RWTH Aachen University; Germany
| | | | | |
Collapse
|
19
|
Blank LM, Ebert BE. From measurement to implementation of metabolic fluxes. Curr Opin Biotechnol 2012; 24:13-21. [PMID: 23219184 DOI: 10.1016/j.copbio.2012.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 10/26/2012] [Accepted: 10/29/2012] [Indexed: 10/27/2022]
Abstract
The intracellular reaction rates (fluxes) are the ultimate outcome of the activities of the complete inventory (from DNA to metabolite) and in their sum determine the cellular phenotype. The genotype-phenotype relationship is fundamental in such different fields as cancer research and biotechnology. Here, we summarize the developments in determining metabolic fluxes, inferring major pathways from the DNA-sequence, estimating optimal flux distributions, and how these flux distributions can be achieved in vivo. The technical advances to intervene with the many levels of the cellular architecture allow the implementation of new strategies in for example Metabolic Engineering.
Collapse
Affiliation(s)
- Lars M Blank
- iAMB - Institute of Applied Microbiology, AABt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany.
| | | |
Collapse
|