1
|
Ren G, Ku WL, Ge G, Hoffman JA, Kang JY, Tang Q, Cui K, He Y, Guan Y, Gao B, Liu C, Archer TK, Zhao K. Acute depletion of BRG1 reveals its primary function as an activator of transcription. Nat Commun 2024; 15:4561. [PMID: 38811575 PMCID: PMC11137027 DOI: 10.1038/s41467-024-48911-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
The mammalian SWI/SNF-like BAF complexes play critical roles during animal development and pathological conditions. Previous gene deletion studies and characterization of human gene mutations implicate that the complexes both repress and activate a large number of genes. However, the direct function of the complexes in cells remains largely unclear due to the relatively long-term nature of gene deletion or natural mutation. Here we generate a mouse line by knocking in the auxin-inducible degron tag (AID) to the Smarca4 gene, which encodes BRG1, the essential ATPase subunit of the BAF complexes. We show that the tagged BRG1 can be efficiently depleted by osTIR1 expression and auxin treatment for 6 to 10 h in CD4 + T cells, hepatocytes, and fibroblasts isolated from the knock-in mice. The acute depletion of BRG1 leads to decreases in nascent RNAs and RNA polymerase II binding at a large number of genes, which are positively correlated with the loss of BRG1. Further, these changes are correlated with diminished accessibility at DNase I Hypersensitive Sites (DHSs) and p300 binding. The acute BRG1 depletion results in three major patterns of nucleosome shifts leading to narrower nucleosome spacing surrounding transcription factor motifs and at enhancers and transcription start sites (TSSs), which are correlated with loss of BRG1, decreased chromatin accessibility and decreased nascent RNAs. Acute depletion of BRG1 severely compromises the Trichostatin A (TSA) -induced histone acetylation, suggesting a substantial interplay between the chromatin remodeling activity of BRG1 and histone acetylation. Our data suggest BRG1 mainly plays a direct positive role in chromatin accessibility, RNAPII binding, and nascent RNA production by regulating nucleosome positioning and facilitating transcription factor binding to their target sites.
Collapse
Affiliation(s)
- Gang Ren
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
- College of Animal Science and Technology, Northwest Agriculture and Forest University, Yangling, Xianyang, Shaanxi, China
| | - Wai Lim Ku
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Guangzhe Ge
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Jackson A Hoffman
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, North Carolina, USA
| | - Jee Youn Kang
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Qingsong Tang
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Kairong Cui
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Trevor K Archer
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, Durham, North Carolina, USA
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
2
|
Vos PD, Gandadireja AP, Rossetti G, Siira SJ, Mantegna JL, Filipovska A, Rackham O. Mutational rescue of the activity of high-fidelity Cas9 enzymes. CELL REPORTS METHODS 2024; 4:100756. [PMID: 38608689 PMCID: PMC11046035 DOI: 10.1016/j.crmeth.2024.100756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/02/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
Programmable DNA endonucleases derived from bacterial genetic defense systems, exemplified by CRISPR-Cas9, have made it significantly easier to perform genomic modifications in living cells. However, unprogrammed, off-target modifications can have serious consequences, as they often disrupt the function or regulation of non-targeted genes and compromise the safety of therapeutic gene editing applications. High-fidelity mutants of Cas9 have been established to enable more accurate gene editing, but these are typically less efficient. Here, we merge the strengths of high-fidelity Cas9 and hyperactive Cas9 variants to provide an enzyme, which we dub HyperDriveCas9, that yields the desirable properties of both parents. HyperDriveCas9 functions efficiently in mammalian cells and introduces insertion and deletion mutations into targeted genomic regions while maintaining a favorable off-target profile. HyperDriveCas9 is a precise and efficient tool for gene editing applications in science and medicine.
Collapse
Affiliation(s)
- Pascal D Vos
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia; ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Andrianto P Gandadireja
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia; ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Giulia Rossetti
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia; ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA 6009, Australia; Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
| | - Stefan J Siira
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA 6009, Australia; Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
| | - Jessica L Mantegna
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia; ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Aleksandra Filipovska
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA 6009, Australia; Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
| | - Oliver Rackham
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia; ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA 6009, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia.
| |
Collapse
|
3
|
Zhou H, He Y, Xiong W, Jing S, Duan X, Huang Z, Nahal GS, Peng Y, Li M, Zhu Y, Ye Q. MSC based gene delivery methods and strategies improve the therapeutic efficacy of neurological diseases. Bioact Mater 2023; 23:409-437. [PMCID: PMC9713256 DOI: 10.1016/j.bioactmat.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 12/05/2022] Open
|
4
|
Vos PD, Rossetti G, Mantegna JL, Siira SJ, Gandadireja AP, Bruce M, Raven SA, Khersonsky O, Fleishman SJ, Filipovska A, Rackham O. Computationally designed hyperactive Cas9 enzymes. Nat Commun 2022; 13:3023. [PMID: 35641498 PMCID: PMC9156780 DOI: 10.1038/s41467-022-30598-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/10/2022] [Indexed: 12/01/2022] Open
Abstract
The ability to alter the genomes of living cells is key to understanding how genes influence the functions of organisms and will be critical to modify living systems for useful purposes. However, this promise has long been limited by the technical challenges involved in genetic engineering. Recent advances in gene editing have bypassed some of these challenges but they are still far from ideal. Here we use FuncLib to computationally design Cas9 enzymes with substantially higher donor-independent editing activities. We use genetic circuits linked to cell survival in yeast to quantify Cas9 activity and discover synergistic interactions between engineered regions. These hyperactive Cas9 variants function efficiently in mammalian cells and introduce larger and more diverse pools of insertions and deletions into targeted genomic regions, providing tools to enhance and expand the possible applications of CRISPR-based gene editing. The ability to alter the genomes of living cells is key to understanding how genes influence the functions of organisms and will be critical to modify living systems for useful purposes. Here, the authors use computational design to discover Cas9 enzymes with increased activity.
Collapse
Affiliation(s)
- Pascal D Vos
- Curtin Medical School, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia.,Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia.,School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Giulia Rossetti
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia.,Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia
| | - Jessica L Mantegna
- Curtin Medical School, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia
| | - Stefan J Siira
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia
| | - Andrianto P Gandadireja
- Curtin Medical School, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia
| | - Mitchell Bruce
- Curtin Medical School, Curtin University, Bentley, WA, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia
| | - Samuel A Raven
- Curtin Medical School, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia.,Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
| | - Olga Khersonsky
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia.,Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia.,School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia.,Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia
| | - Oliver Rackham
- Curtin Medical School, Curtin University, Bentley, WA, Australia. .,Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia. .,Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia. .,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA, Australia. .,Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia.
| |
Collapse
|
5
|
Yue Y, Engelke MF, Blasius TL, Verhey KJ. Hedgehog-induced ciliary trafficking of kinesin-4 motor KIF7 requires intraflagellar transport but not KIF7's microtubule binding. Mol Biol Cell 2021; 33:br1. [PMID: 34705483 PMCID: PMC8886809 DOI: 10.1091/mbc.e21-04-0215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The kinesin-4 motor KIF7 is a conserved regulator of the Hedgehog signaling pathway. In vertebrates, Hedgehog signaling requires the primary cilium, and KIF7 and Gli transcription factors accumulate at the cilium tip in response to Hedgehog activation. Unlike conventional kinesins, KIF7 is an immotile kinesin and its mechanism of ciliary accumulation is unknown. We generated KIF7 variants with altered microtubule binding or motility. We demonstrate that microtubule binding of KIF7 is not required for the increase in KIF7 or Gli localization at the cilium tip in response to Hedgehog signaling. In addition, we show that the immotile behavior of KIF7 is required to prevent ciliary localization of Gli transcription factors in the absence of Hedgehog signaling. Using an engineered kinesin-2 motor that enables acute inhibition of intraflagellar transport, we demonstrate that kinesin-2 KIF3A/KIF3B/KAP mediates the translocation of KIF7 to the cilium tip in response to Hedgehog pathway activation. Together, these results suggest that KIF7’s role at the tip of the cilium is unrelated to its ability to bind to microtubules.
Collapse
Affiliation(s)
- Yang Yue
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Martin F Engelke
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - T Lynne Blasius
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Morshedi Rad D, Alsadat Rad M, Razavi Bazaz S, Kashaninejad N, Jin D, Ebrahimi Warkiani M. A Comprehensive Review on Intracellular Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005363. [PMID: 33594744 DOI: 10.1002/adma.202005363] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/22/2020] [Indexed: 05/22/2023]
Abstract
Intracellular delivery is considered an indispensable process for various studies, ranging from medical applications (cell-based therapy) to fundamental (genome-editing) and industrial (biomanufacture) approaches. Conventional macroscale delivery systems critically suffer from such issues as low cell viability, cytotoxicity, and inconsistent material delivery, which have opened up an interest in the development of more efficient intracellular delivery systems. In line with the advances in microfluidics and nanotechnology, intracellular delivery based on micro- and nanoengineered platforms has progressed rapidly and held great promises owing to their unique features. These approaches have been advanced to introduce a smorgasbord of diverse cargoes into various cell types with the maximum efficiency and the highest precision. This review differentiates macro-, micro-, and nanoengineered approaches for intracellular delivery. The macroengineered delivery platforms are first summarized and then each method is categorized based on whether it employs a carrier- or membrane-disruption-mediated mechanism to load cargoes inside the cells. Second, particular emphasis is placed on the micro- and nanoengineered advances in the delivery of biomolecules inside the cells. Furthermore, the applications and challenges of the established and emerging delivery approaches are summarized. The topic is concluded by evaluating the future perspective of intracellular delivery toward the micro- and nanoengineered approaches.
Collapse
Affiliation(s)
- Dorsa Morshedi Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Maryam Alsadat Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Navid Kashaninejad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute of Molecular Medicine, Sechenov University, Moscow, 119991, Russia
| |
Collapse
|
7
|
Bellefroid C, Reusch C, Lechanteur A, Evrard B, Debacq-Chainiaux F, Mottet D, Piel G. Systematic study of liposomes composition towards efficient delivery of plasmid DNA as potential application of dermal fibroblasts targeting. Int J Pharm 2020; 593:120122. [PMID: 33307161 DOI: 10.1016/j.ijpharm.2020.120122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 01/06/2023]
Abstract
The use of non-viral DNA vectors to topically treat skin diseases has demonstrated a high potential. However, vectors applied on the skin face extracellular barriers including the stratum corneum and intracellular barriers such as the endosomal escape and the nuclear targeting of the plasmid DNA. The aim of this study was to develop a formulation suitable for dermal application and effective for delivering plasmid DNA into cells. Different formulations were prepared using different cationic lipids (DOTAP, DC-Chol, DOTMA) and co-lipids (DOPE, DSPE). Lipoplexes were produced by complexing liposomes with plasmid DNA at different pDNA/CL (w/w) ratios. Our results showed that appropriate pDNA/CL ratios allowing total complexation of plasmid DNA differed depending on the structure of the lipid used. The transfection rates showed that (i) higher rates were obtained with DOTMA lipoplexes, (ii) DC-Chol lipoplexes provided a transfection twice as important as DOTAP lipoplexes and (iii) when DSPE was added, the cytotoxicity decreased while transfection rates were similar. We found that formulations composed of DC-Chol:DOPE:DSPE or DOTMA:DOPE were appropriate to complex plasmid DNA and to transfect human primary dermal fibroblasts with efficacy and limited cytotoxicity. Therefore, these formulations are highly promising in the context of gene therapy to treat skin diseases.
Collapse
Affiliation(s)
- C Bellefroid
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Development, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
| | - C Reusch
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
| | - A Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Development, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
| | - B Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Development, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
| | - F Debacq-Chainiaux
- URBC, Namur Research Institute for Life Science (NARILIS), University of Namur, 5000 Namur, Belgium
| | - D Mottet
- Laboratory of Gene Expression and Cancer, GIGA-Molecular Biology of Diseases, University of Liège, 4000 Liège, Belgium
| | - G Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Development, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium.
| |
Collapse
|