1
|
Fernandez‐Moreno J, Yaschenko AE, Neubauer M, Marchi AJ, Zhao C, Ascencio‐Ibanez JT, Alonso JM, Stepanova AN. A rapid and scalable approach to build synthetic repetitive hormone-responsive promoters. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1942-1956. [PMID: 38379432 PMCID: PMC11182585 DOI: 10.1111/pbi.14313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Advancement of DNA-synthesis technologies has greatly facilitated the development of synthetic biology tools. However, high-complexity DNA sequences containing tandems of short repeats are still notoriously difficult to produce synthetically, with commercial DNA synthesis companies usually rejecting orders that exceed specific sequence complexity thresholds. To overcome this limitation, we developed a simple, single-tube reaction method that enables the generation of DNA sequences containing multiple repetitive elements. Our strategy involves commercial synthesis and PCR amplification of padded sequences that contain the repeats of interest, along with random intervening sequence stuffers that include type IIS restriction enzyme sites. GoldenBraid molecular cloning technology is then employed to remove the stuffers, rejoin the repeats together in a predefined order, and subclone the tandem(s) in a vector using a single-tube digestion-ligation reaction. In our hands, this new approach is much simpler, more versatile and efficient than previously developed solutions to this problem. As a proof of concept, two different phytohormone-responsive, synthetic, repetitive proximal promoters were generated and tested in planta in the context of transcriptional reporters. Analysis of transgenic lines carrying the synthetic ethylene-responsive promoter 10x2EBS-S10 fused to the GUS reporter gene uncovered several developmentally regulated ethylene response maxima, indicating the utility of this reporter for monitoring the involvement of ethylene in a variety of physiologically relevant processes. These encouraging results suggest that this reporter system can be leveraged to investigate the ethylene response to biotic and abiotic factors with high spatial and temporal resolution.
Collapse
Affiliation(s)
| | - Anna E. Yaschenko
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Matthew Neubauer
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Alex J. Marchi
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Chengsong Zhao
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - José T. Ascencio‐Ibanez
- Department of Molecular and Structural BiochemistryNorth Carolina State UniversityRaleighNCUSA
| | - Jose M. Alonso
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| | - Anna N. Stepanova
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
2
|
Lavenniah A, Luu TDA, Li YP, Lim TB, Jiang J, Ackers-Johnson M, Foo RSY. Engineered Circular RNA Sponges Act as miRNA Inhibitors to Attenuate Pressure Overload-Induced Cardiac Hypertrophy. Mol Ther 2020; 28:1506-1517. [PMID: 32304667 PMCID: PMC7264434 DOI: 10.1016/j.ymthe.2020.04.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/16/2020] [Accepted: 04/04/2020] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs) sequester microRNAs (miRNAs) and repress their endogenous activity. We hypothesized that artificial circRNA sponges (circmiRs) can be constructed to target miRNAs therapeutically, with a low dosage requirement and extended half-lives compared to current alternatives. This could present a new treatment approach for critical global pathologies, including cardiovascular disease. Here, we constructed a circmiR sponge to target known cardiac pro-hypertrophic miR-132 and -212. Expressed circmiRs competitively inhibited miR-132 and -212 activity in luciferase rescue assays and showed greater stability than linear sponges. A design containing 12 bulged binding sites with 12 nucleotides spacing was determined to be optimal. Adeno-associated viruses (AAVs) were used to deliver circmiRs to cardiomyocytes in vivo in a transverse aortic constriction (TAC) mouse model of cardiac disease. Hypertrophic disease characteristics were attenuated, and cardiac function was preserved in treated mice, demonstrating the potential of circmiRs as novel therapeutic tools. Subsequently, group I permutated intron-exon sequences were used to directly synthesize exogenous circmiRs, which showed greater in vitro efficacy than the current gold standard antagomiRs in inhibiting miRNA function. Engineered circRNAs thus offer exciting potential as future therapeutics.
Collapse
Affiliation(s)
- Annadoray Lavenniah
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore; Cardiovascular Research Institute, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
| | - Tuan Danh Anh Luu
- Cardiovascular Research Institute, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
| | - Yiqing Peter Li
- Cardiovascular Research Institute, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
| | - Tingsen Benson Lim
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore; Cardiovascular Research Institute, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
| | - Jianming Jiang
- Cardiovascular Research Institute, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
| | - Matthew Ackers-Johnson
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore; Cardiovascular Research Institute, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
| | - Roger S-Y Foo
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore; Cardiovascular Research Institute, National University of Singapore, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore.
| |
Collapse
|
3
|
Schiffer L, Anderko S, Hobler A, Hannemann F, Kagawa N, Bernhardt R. A recombinant CYP11B1 dependent Escherichia coli biocatalyst for selective cortisol production and optimization towards a preparative scale. Microb Cell Fact 2015; 14:25. [PMID: 25880059 PMCID: PMC4347555 DOI: 10.1186/s12934-015-0209-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/18/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human mitochondrial CYP11B1 catalyzes a one-step regio- and stereoselective 11β-hydroxylation of 11-deoxycortisol yielding cortisol which constitutes not only the major human stress hormone but also represents a commercially relevant therapeutic drug due to its anti-inflammatory and immunosuppressive properties. Moreover, it is an important intermediate in the industrial production of synthetic pharmaceutical glucocorticoids. CYP11B1 thus offers a great potential for biotechnological application in large-scale synthesis of cortisol. Because of its nature as external monooxygenase, CYP11B1-dependent steroid hydroxylation requires reducing equivalents which are provided from NADPH via a redox chain, consisting of adrenodoxin reductase (AdR) and adrenodoxin (Adx). RESULTS We established an Escherichia coli based whole-cell system for selective cortisol production from 11-deoxycortisol by recombinant co-expression of the demanded 3 proteins. For the subsequent optimization of the whole-cell activity 3 different approaches were pursued: Firstly, CYP11B1 expression was enhanced 3.3-fold to 257 nmol∗L(-1) by site-directed mutagenesis of position 23 from glycine to arginine, which was accompanied by a 2.6-fold increase in cortisol yield. Secondly, the electron transfer chain was engineered in a quantitative manner by introducing additional copies of the Adx cDNA in order to enhance Adx expression on transcriptional level. In the presence of 2 and 3 copies the initial linear conversion rate was greatly accelerated and the final product concentration was improved 1.4-fold. Thirdly, we developed a screening system for directed evolution of CYP11B1 towards higher hydroxylation activity. A culture down-scale to microtiter plates was performed and a robot-assisted, fluorescence-based conversion assay was applied for the selection of more efficient mutants from a random library. CONCLUSIONS Under optimized conditions a maximum productivity of 0.84 g cortisol∗L(-1)∗d(-1) was achieved, which clearly shows the potential of the developed system for application in the pharmaceutical industry.
Collapse
Affiliation(s)
- Lina Schiffer
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Simone Anderko
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Anna Hobler
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Frank Hannemann
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Norio Kagawa
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
4
|
Gudipudi A, Bajji C, Kosana RR, Panati K, Lomada D, Arva Tatireddigari VRR, Narala VR. Gene fragment polymerization for increased yield of recombinant HIV fusion inhibitor enfuvirtide. [corrected]. Biotechnol Lett 2014; 36:1761-9. [PMID: 24966037 DOI: 10.1007/s10529-014-1556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/13/2014] [Indexed: 11/27/2022]
Abstract
Fuzeon (Enfuvirtide, T20) is the first fusion inhibitor approved by the FDA of the USA for the treatment of HIV/AIDS in combination with other anti-retroviral drugs. Enfuvirtide is a synthetic peptide that blocks the entry of HIV into healthy host CD4 cells, which requires very high (90 mg twice daily) therapeutic doses. To increase the yield of Enfuvirtide, a gene polymerization strategy was introduced and recombinant T20 (rT20) was expressed in Escherichia coli as a five copy repeat polypeptide with a histidine-tag. The five copy rT20 was purified by Ni-affinity chromatography and cleaved to single rT20 units by cyanogen bromide. Finally, single rT20 units were purified by reversed phase chromatography giving a yield (400 mg/l) with a purity >95 %, which exhibited specific biological activity similar to Fuzeon.
Collapse
Affiliation(s)
- Anil Gudipudi
- Virchow Research Center, Hyderabad, 500 043, Andhra Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
5
|
Donelson E, Chen L, Zhang X, Goswami P, Song BJ, Hardwick JP. Genomic structure and regulation of the rat hepatic CYP4F1 gene by peroxisome proliferators. Arch Biochem Biophys 2008; 472:1-16. [PMID: 18262487 DOI: 10.1016/j.abb.2008.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 01/21/2008] [Accepted: 01/23/2008] [Indexed: 11/17/2022]
Abstract
The rat hepatic gene CYP4F1 encodes a fatty acid omega hydroxylase P450 that metabolizes proinflammatory eicosanoids and long-chain fatty acids. We have completely sequenced the CYP4F1 gene (Accession Nos. AF200361 and AF181083), identified multiple transcription start sites, and characterized a strong core promoter region, -760/116, induced by retinoic acids and peroxisome proliferators in rat hepatoma McA-RH7777 cells. Three peroxisome proliferator responsive elements (PPRE) bind both PPARalpha/RXRalpha and HNF4alpha. Co-transfection of McA-RH7777 cells with the -760/116 reporter construct and PPARalpha/RXRalpha or HNF4alpha showed that HNF4alpha activated while PPARalpha/RXRalpha inhibited CYP4F1 promoter activity. Treating cells with Wy14,643 reversed all initial effects, indicating co-regulation of CYP4F1 gene transcription by PPARalpha/RXRalpha and HNF4alpha. Chromatin immunoprecipitation analysis of cells treated with Wy14,643 showed association of PPARalpha/RXRalpha with the active transcription of the CYP4F1 gene while in clofibrate treated rats HNF4alpha binds during gene repression, suggesting differential regulation of the CYP4F1 gene in vivo and in cell lines.
Collapse
Affiliation(s)
- Ellen Donelson
- Department of Biochemistry and Molecular Pathology, Northeastern Ohio Universities College of Medicine, 4209 State Route 44, P.O. Box 95, Rootstown, OH 44272-0095, USA
| | | | | | | | | | | |
Collapse
|
6
|
Türkel S, Farabaugh P. Comment on Blachinsky et al. "Procedure for controlling number of repeats, orientation, and order during cloning of oligonucleotides" Biotechniques 36:933-936 (June 2004). Biotechniques 2005; 37:562; author reply 562. [PMID: 15517967 DOI: 10.2144/04374bf01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|