Baillat G, Gaillard S, Castets F, Monneron A. Interactions of phocein with nucleoside-diphosphate kinase, Eps15, and Dynamin I.
J Biol Chem 2002;
277:18961-6. [PMID:
11872741 DOI:
10.1074/jbc.m108818200]
[Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phocein, an intracellular protein interacting with striatin, bears a few homologies with the sigma-subunits of clathrin adaptor proteins (Baillat, G., Moqrich, A., Castets, F., Baude, A., Bailly, Y., Benmerah, A., and Monneron, A. (2001) Mol. Biol. Cell 12, 663-673). Using phocein as a bait in a yeast two-hybrid screen, we identified two novel interacting proteins, nucleoside-diphosphate kinase (NDPK) and Eps15. Immunoprecipitation and pull-down experiments involving native and/or recombinant phocein and, respectively, NDPK and Eps15, biochemically validated their interactions. NDPK and Eps15 were recently shown to be functional neighbors of dynamin. Dynamin I is shown here to directly interact with NDPK through its C-terminal proline-rich domain, whereas recombinant phocein associates with native dynamin I. Immunocytochemical studies of rat embryonic hippocampal neurons demonstrated partial co-localization of phocein and dynamin I. Phocein thus appears to be a component of the complexes involved in some steps of the vesicular traffic machinery.
Collapse