1
|
Khalifa A, Guijarro A, Nencioni A. Advances in Diet and Physical Activity in Breast Cancer Prevention and Treatment. Nutrients 2024; 16:2262. [PMID: 39064705 PMCID: PMC11279876 DOI: 10.3390/nu16142262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
There is currently a growing interest in diets and physical activity patterns that may be beneficial in preventing and treating breast cancer (BC). Mounting evidence indicates that indeed, the so-called Mediterranean diet (MedDiet) and regular physical activity likely both help reduce the risk of developing BC. For those who have already received a BC diagnosis, these interventions may decrease the risk of tumor recurrence after treatment and improve quality of life. Studies also show the potential of other dietary interventions, including fasting or modified fasting, calorie restriction, ketogenic diets, and vegan or plant-based diets, to enhance the efficacy of BC therapies. In this review article, we discuss the biological rationale for utilizing these dietary interventions and physical activity in BC prevention and treatment. We highlight published and ongoing clinical studies that have applied these lifestyle interventions to BC patients. This review offers valuable insights into the potential application of these dietary interventions and physical activity as complimentary therapies in BC management.
Collapse
Affiliation(s)
- Amr Khalifa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
| | - Ana Guijarro
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
2
|
Afzal M, Greco F, Quinzi F, Scionti F, Maurotti S, Montalcini T, Mancini A, Buono P, Emerenziani GP. The Effect of Physical Activity/Exercise on miRNA Expression and Function in Non-Communicable Diseases-A Systematic Review. Int J Mol Sci 2024; 25:6813. [PMID: 38999923 PMCID: PMC11240922 DOI: 10.3390/ijms25136813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Exercise may differently affect the expression of key molecular markers, including skeletal muscle and circulating miRNAs, involved in cellular and metabolic pathways' regulation in healthy individuals and in patients suffering from non-communicable diseases (NCDs). Epigenetic factors are emerging as potential therapeutic biomarkers in the prognosis and treatment of NCDs and important epigenetic factors, miRNAs, play a crucial role in cellular pathways. This systematic review aims to underline the potential link between changes in miRNA expression after different types of physical activity/exercise in some populations affected by NCDs. In June 2023, we systematically investigated the following databases: PubMed, MEDLINE, Scopus, and Web of Science, on the basis of our previously established research questions and following the PRISMA guidelines. The risk of bias and quality assessment were, respectively, covered by ROB2 and the Newcastle Ottawa scale. Of the 1047 records extracted from the initial search, only 29 studies were found to be eligible. In these studies, the authors discuss the association between exercise-modulated miRNAs and NCDs. The NCDs included in the review are cancer, cardiovascular diseases (CVDs), chronic obstructive pulmonary disease (COPD), and type 2 diabetes mellitus (T2DM). We evidenced that miR-146, miR-181, miR-133, miR-21, and miRNA-1 are the most reported miRNAs that are modulated by exercise. Their expression is associated with an improvement in health markers and they may be a potential target in terms of the development of future therapeutic tools.
Collapse
Affiliation(s)
- Moomna Afzal
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy
| | - Francesca Greco
- Department of Movement, Human and Health Sciences, Foro Italico University of Rome, 00135 Rome, Italy
| | - Federico Quinzi
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy
| | - Francesca Scionti
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy
| | - Samantha Maurotti
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy
- Research Center for the Prevention and Treatment of Metabolic Diseases, University Magna Grecia, 88100 Catanzaro, Italy
| | - Annamaria Mancini
- Department of Medicine, Movement Sciences and Wellbeing, University Parthenope, 80133 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore s.r.l, 80131 Naples, Italy
| | - Pasqualina Buono
- Department of Medicine, Movement Sciences and Wellbeing, University Parthenope, 80133 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore s.r.l, 80131 Naples, Italy
| | - Gian Pietro Emerenziani
- Department of Clinical and Experimental Medicine, University Magna Grecia, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Ramos-Lopez O. Epigenetic Biomarkers of Metabolic Responses to Lifestyle Interventions. Nutrients 2023; 15:4251. [PMID: 37836535 PMCID: PMC10574040 DOI: 10.3390/nu15194251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Studies have examined the possible utility of epigenetic phenomena (DNA methylation changes, covalent histone modifications, and miRNA expression patterns) in predicting individual responses to different lifestyle programs. Nonetheless, most available evidence is focused on identifying epigenetic marks eventually associated with body composition and adiposity outcomes, whereas their roles in metabolic endings remain less explored. This document comprehensively reviewed the evidence regarding the use of epigenetic signatures as putative biomarkers of metabolic outcomes (glycemic, lipid, blood pressure, and inflammatory/oxidative stress features) in response to different lifestyle interventions in humans. Although more investigation is still necessary in order to translate this knowledge in clinical practice, these scientific insights are contributing to the design of advanced strategies for the precise management of cardiometabolic risk, gaining understanding on metabolic heterogeneity, allowing for the prediction of metabolic outcomes, and facilitating the design of epigenome-based nutritional strategies for a more customized approach for metabolic alterations treatment under the scope of precision nutrition.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana 22390, Mexico
| |
Collapse
|
4
|
Barone I, Gelsomino L, Accattatis FM, Giordano F, Gyorffy B, Panza S, Giuliano M, Veneziani BM, Arpino G, De Angelis C, De Placido P, Bonofiglio D, Andò S, Giordano C, Catalano S. Analysis of circulating extracellular vesicle derived microRNAs in breast cancer patients with obesity: a potential role for Let-7a. J Transl Med 2023; 21:232. [PMID: 37004031 PMCID: PMC10064709 DOI: 10.1186/s12967-023-04075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND The incidence of obesity, a known risk factor for several metabolic and chronic diseases, including numerous malignancies, has risen sharply in the world. Various clinical studies demonstrate that excessive Body Mass Index (BMI) may worsen the incidence, prognosis, and mortality rates of breast cancer. Thus, understanding the link tying up obesity and breast cancer onset and progression is critically important, as it can impact patients' survival and quality of life. Recently, circulating extracellular vesicle (EV) derived miRNAs have attracted much attention for their diagnostic, prognostic and therapeutic potential in oncology research. Although the potential role of EV-derived miRNAs in the early detection of breast cancer has been repeatedly mentioned, screening of miRNAs packaged within serum EVs has not yet been reported in patients with obesity. METHODS Circulating EVs were isolated from normal weight (NW), and overweight/obese (OW/Ob) breast cancer patients and characterized by Transmission Electron Microscopy (TEM), Nanoparticle Tracking Analysis (NTA), and protein marker expression. Evaluation of EV-associated miRNAs was conducted in a screening (RNA-seq) and a validation (qRT-PCR) cohort. Bioinformatic analysis was performed to uncover significantly enriched biological processes, molecular functions and pathways. ROC and Kaplain-Meier survival analyses were used for clinical significance. RESULTS Comparison of serum EV-derived miRNAs from NW and OW/Ob patients detected seven differentially expressed miRNAs (let-7a-5p, miR-122-5p, miR-30d-5p, miR-126-3p, miR-27b-3p, miR-4772-3p, and miR-10a-5p) in the screening cohort. GO analysis revealed the enrichment of protein phosphorylation, intracellular signal transduction, signal transduction, and vesicle-mediated transport among the top biological processes. In addition, the target genes were significantly enriched in pathways related to PI3K/Akt, growth hormones, and insulin signalings, which are all involved in obesity-related diseases and/or breast cancer progression. In the validation cohort, qRT-PCR confirmed a significant down-regulation of EV-derived let-7a in the serum of OW/Ob breast cancer patients compared to NW patients. Let-7a levels also exhibited a negative correlation with BMI values. Importantly, decreased let-7a miRNA expression was associated with higher tumor grade and poor survival in patients with breast cancer. CONCLUSION These results suggest that serum-EV derived miRNAs may reflect a differential profile in relation to a patient's BMI, which, once validated in larger cohorts of patients, could provide insights into novel specific biomarkers and innovative targets to prevent the progression of obesity-mediated breast cancer.
Collapse
Affiliation(s)
- Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy.
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy.
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Felice Maria Accattatis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Balazs Gyorffy
- Departments of Bioinformatics and Pediatrics, Semmelweis University, 1094, Budapest, Hungary
- TTK Cancer Biomarker Research Group, 1117, Budapest, Hungary
| | - Salvatore Panza
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Bianca Maria Veneziani
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Grazia Arpino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Pietro De Placido
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy.
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata Di Rende (CS), 87036, Rende, Cosenza, Italy.
| |
Collapse
|
5
|
Orlandella FM, De Stefano AE, Braile M, Luciano N, Mancini A, Franzese M, Buono P, Salvatore G. Unveiling the miRNAs responsive to physical activity/exercise training in cancer: A systematic review. Crit Rev Oncol Hematol 2022; 180:103844. [DOI: 10.1016/j.critrevonc.2022.103844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
|
6
|
Feng N, Yu H, Wang Y, Zhang Y, Xiao H, Gao W. Exercise training attenuates angiotensin II-induced cardiac fibrosis by reducing POU2F1 expression. JOURNAL OF SPORT AND HEALTH SCIENCE 2022:S2095-2546(22)00104-1. [PMID: 36374849 PMCID: PMC10362488 DOI: 10.1016/j.jshs.2022.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/09/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
PURPOSE Exercise training protects against heart failure. However, the mechanism underlying the protective effect of exercise training on angiotensin II (Ang II)-induced cardiac fibrosis remains unclear. METHODS An exercise model involving C57BL/6N mice and 6 weeks of treadmill training was used. Ang II (1.44 mg/kg/day) was administered to induce cardiac fibrosis. RNA sequencing and bioinformatic analysis were used to identify the key factors mediating the effects of exercise training on cardiac fibrosis. Primary adult mouse cardiac fibroblasts (CFs) were used in vitro. Adeno-associated virus serotype 9 was used to overexpress POU domain, class 2, transcription factor 1 (POU2F1) in vivo. RESULTS Exercise training attenuated Ang II-induced cardiac fibrosis and reversed 39 gene expression changes. The transcription factor regulating the largest number of these genes was POU2F1. Compared to controls, POU2F1 was shown to be significantly upregulated by Ang II, which is itself reduced by exercise training. In vivo, POU2F1 overexpression nullified the benefits of exercise training on cardiac fibrosis. In CFs, POU2F1 promoted cardiac fibrosis. CCAAT enhancer-binding protein β (C/EBPβ) was predicted to be the transcription factor of POU2F1 and verified using a dual-luciferase reporter assay. In vivo, exercise training activated AMP-activated protein kinase (AMPK) and alleviated the increase in C/EBPβ induced by Ang II. In CFs, AMPK agonist inhibited the increase in C/EBPβ and POU2F1 induced by Ang II, whereas AMPK inhibitor reversed this effect. CONCLUSION Exercise training attenuates Ang II-induced cardiac fibrosis by reducing POU2F1. Exercise training inhibits POU2F1 by activating AMPK, which is followed by the downregulation of C/EBPβ, the transcription factor of POU2F1.
Collapse
Affiliation(s)
- Na Feng
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Haiyi Yu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Yueshen Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Youyi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, 100191, China.
| | - Wei Gao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| |
Collapse
|
7
|
Hong BS. Regulation of the Effect of Physical Activity Through MicroRNAs in Breast Cancer. Int J Sports Med 2021; 43:455-465. [PMID: 34872116 DOI: 10.1055/a-1678-7147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Physical activity and exercise can induce beneficial molecular and biological regulations that have been associated with an incidence of various diseases, including breast cancer. Recent studies demonstrated that the potential links between physical activity-induced circulating microRNAs (miRNAs) and cancer risk and progression. Here, we investigated whether altered miRNAs by exercise could influence breast cancer progression. After primary searching in PubMed and reviewing the full-text papers, candidate miRNAs altered by exercise in breast cancer were identified. Analysis of expression profiles and clinical outcomes of altered miRNAs using The Cancer Genome Atlas datasets showed altered miRNAs expressions were significantly associated with the patient's prognosis, whereas prognostic values of each miRNA varied in different stages and subtypes. In addition, altered miRNAs profiles regulated various target genes and key signaling pathways in tumorigenesis, including pathways in cancer and the PI3K-Akt signaling pathway; however, miRNAs regulated the expression of target genes differently according to tumor stages and subtypes. These results indicate that circulating miRNAs are promising noninvasive stable biomarkers for early detection, diagnosis, prognosis, and monitoring the response to clinical therapies of breast cancer. Moreover, stages and subtype-stratified approaches for breast cancer progression would be needed to evaluate the prognostic value of miRNAs for biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Bok Sil Hong
- Cheju Halla University, Life Science Research Center, Department of Nursing, Jeju, Korea (the Republic of)
| |
Collapse
|
8
|
The Effect of miR-520b on Macrophage Polarization and T Cell Immunity by Targeting PTEN in Breast Cancer. JOURNAL OF ONCOLOGY 2021; 2021:5170496. [PMID: 34659411 PMCID: PMC8514911 DOI: 10.1155/2021/5170496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
Background Breast cancer is the most common cancer in women. miR-520b had binding sites with PTEN through the bioinformatics prediction. But few studies have been conducted on miR-520b and PTEN in breast cancer. We aimed to explore the effect of miR-520b and PTEN on breast cancer and the mechanisms involved. Methods Clinical samples of breast cancer were collected. Bioinformatics analysis was performed to screen the differentially expressed miRNAs. CD4 T cells and CD8 T cells were cocultured with MCF-7 cells in the Transwell system. Moreover, MCF-7 cells and M0 macrophage cocultured cell lines were constructed. qRT-PCR, IF, western blot, flow cytometry, and ELISA were performed to detect related factors expression. Starbase and dual-luciferase reporter assay verified the binding of miR-520b to PTEN. The tumor formation model was established to study miR-520b and PTEN effects in vivo. Results The differentially expressed miR-520b was screened via miRNAs sequencing and cell verification. miR-520b expression was high, PTEN was low in tumor tissues, T cells and NK cells were inhibited, and macrophages were transformed into M2 type, promoting immune escape. In addition, miR-520b bound to PTEN. Then, splenic CD4 T cells and CD8 T cells were successfully sorted. During CD4 T cell differentiation to Th1 and Treg, Th1 was inhibited, and Treg was activated. We found the polarization of macrophages was related to breast cancer. The proportion of CD206 cells increased and CD68 cells decreased in the miR-520b mimics group compared with the mimic NC group. Compared with the inhibitor NC group, the proportion of CD206 cells decreased, and CD68 cells increased in the miR-520b inhibitor group. In vivo experiments showed that miR-520b inhibitor inhibited tumor growth and promoted PTEN expression. The proportion of CD3, CD4, CD8, NK1.1, CD4+IFNγ, and CD68 cells increased, while FOXP3 and CD206 cells decreased in the miR-520b inhibitor group compared with the inhibitor NC group. However, the proportion of CD3, CD4, CD8, NK1.1, CD4+IFNγ, and CD68 cells decreased, while FOXP3 and CD206 cells increased after the addition of siPTEN. Conclusions miR-520b inhibited PTEN and aggravated breast tumors. miR-520b inhibitor enhanced CD4 and CD8 cell populations in the tumor immune microenvironment and inhibited tumor growth.
Collapse
|