1
|
Zhao Y, Cui R, Du R, Song C, Xie F, Ren L, Li J. Platelet-Derived Microvesicles Mediate Cardiomyocyte Ferroptosis by Transferring ACSL1 During Acute Myocardial Infarction. Mol Biotechnol 2025; 67:790-804. [PMID: 38466505 DOI: 10.1007/s12033-024-01094-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/21/2024] [Indexed: 03/13/2024]
Abstract
Acute myocardial infarction (AMI) is one of the critical health conditions often caused by the rupture of unstable coronary artery plaque, triggering a series of events, such as platelet activation, thrombus formation, coronary artery blockage, lasted severe ischemia, and hypoxia in cardiomyocytes, and culminating in cell death. Platelet-derived microvesicles (PMVs) act as intermediates for cellular communication. Nevertheless, the role of PMVs in myocardial infarction remains unclear. Initially, AMI-related messenger ribose nucleic acid (mRNA) and micro RNA (miRNA) datasets from the Gene Expression Omnibus (GEO) database were analyzed, specifically focusing on the expressed genes associated with Ferroptosis. Further, a miRNA-mRNA regulatory network specific to AMI was constructed. Then, the effect of PMVs on cardiomyocyte survival was further confirmed through in vitro experiments. High ACSL1 expression was observed in the platelets of AMI patients. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that ACSL1, located in the mitochondria, played a key role in the PPAR signaling pathway. The elevated ACSL1 expression in a co-culture model of PMVs and AC16 cardiomyocytes significantly increased the AC16 cell Ferroptosis. Further, we validated that the platelet ACSL1 expression could be regulated by hsa-miR-449a. Together, these findings suggested that platelet ACSL1 could trigger myocardial cell death via PMV transport. In addition, this research provided a theoretical framework for attenuating myocardial cell Ferroptosis in patients with acute myocardial infarction.
Collapse
Affiliation(s)
- Yunfeng Zhao
- Department of Cardiology, First Hospital of Qinhuangdao, No. 258, Wenhua Road, Haigang District, Qinhuangdao, 066099, China
| | - Rui Cui
- Department of Cardiology, First Hospital of Qinhuangdao, No. 258, Wenhua Road, Haigang District, Qinhuangdao, 066099, China
| | - Ran Du
- Department of Cardiology, First Hospital of Qinhuangdao, No. 258, Wenhua Road, Haigang District, Qinhuangdao, 066099, China
| | - Chunmei Song
- Department of Cardiology, First Hospital of Qinhuangdao, No. 258, Wenhua Road, Haigang District, Qinhuangdao, 066099, China
| | - Fei Xie
- Department of Cardiac Surgery, The Second Hospital Affiliated to Harbin Medical University, No.246, Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Lin Ren
- Department of Cardiology, First Hospital of Qinhuangdao, No. 258, Wenhua Road, Haigang District, Qinhuangdao, 066099, China.
| | - Junquan Li
- Department of Cardiac Surgery, The Second Hospital Affiliated to Harbin Medical University, No.246, Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|