1
|
Bridi A, Sangalli JR, Nociti RP, Dos Santos AC, Alves L, Bastos NM, Ferronato GDÁ, Rosa PMDS, Fiorenza MF, Pugliesi G, Meirelles FV, Chiaratti MR, da Silveira JC, Perecin F. Small extracellular vesicles derived from the crosstalk between early embryos and the endometrium potentially mediate corpus luteum function†. Biol Reprod 2025; 112:54-69. [PMID: 39388257 DOI: 10.1093/biolre/ioae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/10/2023] [Accepted: 10/08/2024] [Indexed: 10/15/2024] Open
Abstract
The first interactions among the embryo, endometrium, and corpus luteum are essential for pregnancy success. Small extracellular vesicles (sEVs) are part of these interactions. We previously demonstrated that small extracellular vesicles from in vivo- or in vitro-produced bovine embryos contain different miRNA cargos. Herein we show: (1) the presence and origin (in vivo or in vitro) of the blastocyst differentially reprograms endometrial transcriptional profiles; (2) the endometrial explant (EE) cultured with in vivo or in vitro embryos release small extracellular vesicles with different miRNA contents, and (3) the luteal explant (CLE) exposed to these small extracellular vesicles have distinct mRNA and miRNA profiles. To elucidate this, the endometrial explant were cultured in the presence or absence of a single Day-7 in vivo (EE-artificial insemination; EE-AI) or in vitro (EE-in vitro fertilization; EE-IVF) embryo. After of culture we found, in the endometrial explant, 45 and 211 differentially expressed genes associated with embryo presence and origin, respectively. Small extracellular vesicles were recovered from the conditioned media (CM) in which endometrial explant and embryos were co-cultured. Four miRNAs were differentially expressed between small extracellular vesicles from CC-EE-AI and CC-EE-IVF. Luteal explants exposed in culture to these small extracellular vesicles showed 1360 transcripts and 15 miRNAs differentially expressed. The differentially expressed genes associated with embryo presence and origin, modulating cells' proliferation, and survival. These results demonstrate that in vivo- or in vitro-produced bovine embryos induce molecular alterations in the endometrium; and that the embryo and endometrium release small extracellular vesicles capable of modifying the messenger RNA (mRNA) and miRNA profile in the corpus luteum. Therefore, the small extracellular vesicles-mediated embryo-endometrium-corpus luteum interactions possibly regulate the corpus luteum viability to ensure pregnancy success.
Collapse
Affiliation(s)
- Alessandra Bridi
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Juliano Rodrigues Sangalli
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Ricardo Perecin Nociti
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Angélica Camargo Dos Santos
- Department of Genetics and Evolution, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13565-905, São Carlos, Brazil
| | - Luana Alves
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Natália Marins Bastos
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Giuliana de Ávila Ferronato
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Paola Maria da Silva Rosa
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Mariani Farias Fiorenza
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Guilherme Pugliesi
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, São Paulo, Brazil
| | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Marcos Roberto Chiaratti
- Department of Genetics and Evolution, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13565-905, São Carlos, Brazil
| | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| | - Felipe Perecin
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, 13635-900, Pirassununga, Brazil
| |
Collapse
|
2
|
Strangstalien A, Braz CU, Miyamoto A, Marey M, Khatib H. Early transcriptomic changes in peripheral blood 7 days after embryo transfer in dairy cattle. J Dairy Sci 2024; 107:3080-3089. [PMID: 38101734 DOI: 10.3168/jds.2023-24199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/12/2023] [Indexed: 12/17/2023]
Abstract
A common goal of the dairy industry is to shorten the calving interval to reap several benefits associated with improved fertility. Early pregnancy detection is crucial to shorten this interval, allowing for prompt re-insemination of cows that failed to conceive after the first service. Currently, the industry lacks a method to accurately predict pregnancy within the first 3 wk. The polypeptide cytokine IFN-tau (IFNT) is the primary signal for maternal recognition of pregnancy in ruminants. As IFNT is released from the early conceptus, it initiates a cascade of effects, including upregulation of IFN-stimulated genes (ISG). Expression of ISG can be detected in the peripheral blood. The present study aimed to characterize peripheral transcriptomic changes, including the ISG, as early as d 7 after embryo transfer. A total of 170 Holstein heifers received in vitro-produced embryos. Whole blood was collected from these heifers within 24 h of the embryo transfer (d 0), d 7, and d 14 after embryo transfer. The heifers were divided into 2 groups, pregnant and nonpregnant, based on pregnancy diagnosis on d 28 via ultrasound. Total RNA was extracted from the peripheral blood of pregnant and nonpregnant heifers, pooled and sequenced. Expression analysis on d 7 heifers resulted in 13 significantly differentially expressed genes mostly related to innate immunity. Differential expression analysis comparing pregnant heifers on d 0 to the same heifers on d 14 showed 51 significantly differentially expressed genes. Eight genes were further quantified through reverse-transcription quantitative real-time PCR for biological validation. On d 7 after embryo transfer, mRNA transcriptions of EDN1, CXCL3, CCL4, and IL1A were significantly upregulated in pregnant heifers (n = 14) compared with nonpregnant heifers (n = 14), with respective fold changes of 8.10, 18.12, 29.60, and 29.97. Although on d 14 after embryo transfer, mRNA transcriptions of ISG15, MX2, OASY1, and IFI6 were significantly upregulated in the blood of pregnant heifers (n = 14) compared with the same heifers on d 0, with respective fold changes of 5.09, 2.59, 3.89, and 3.08. These findings demonstrate that several immune-related genes and ISG are activated during the first 2 wk after embryo transfer, which may explain how the maternal immune system accommodates the allogenic conceptus. To further investigate the diagnostic potentials of these genes, future studies are warranted to analyze the specificity and sensitivity of these biomarkers to predict early pregnancy.
Collapse
Affiliation(s)
- A Strangstalien
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - C U Braz
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - A Miyamoto
- Global Agromedicine Research Center, Obihiro University of Agriculture & Veterinary Medicine, Obihiro 080-8555, Japan
| | - M Marey
- Global Agromedicine Research Center, Obihiro University of Agriculture & Veterinary Medicine, Obihiro 080-8555, Japan; Department of Theriogenology, Faculty of Veterinary Medicine, Damanhour University, Behera, 22511, Egypt
| | - H Khatib
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706.
| |
Collapse
|
3
|
Kusama K, Bai R, Matsuno Y, Ideta A, Sakurai T, Nagaoka K, Hori M, Imakawa K. Characterization of Serum Metabolome and Proteome Profiles Identifies SNX5 Specific for Pregnancy Failure in Holstein Heifers. Life (Basel) 2022; 12:life12020309. [PMID: 35207596 PMCID: PMC8877674 DOI: 10.3390/life12020309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 01/31/2023] Open
Abstract
Pregnancy loss predominantly occurs during the first 3–4 weeks due to fertilization failure or early embryonic losses in cattle. Insufficient biochemical communication between conceptus (embryo plus extraembryonic membranes) and endometrium has been suspected as the primary cause for early embryonic losses. If molecules regulating this communication were identified, molecular mechanisms associated with early pregnancy losses could be better understood. To identify candidate molecules as detection markers of non-pregnant or females undergoing embryonic loss, peripheral blood from embryo-transferred heifers on day 7 (day 0 = day of estrus) were collected on days 17 (pre-attachment), 20 (during attachment), and 22 (post-attachment), which were subjected to metabolome and global proteome iTRAQ analyses. The metabolome analysis partly divided serum components into pregnant or not. In the iTRAQ analysis, heatmap analysis with top 25 proteins was separated into pregnant or not on day 20 or 22. Furthermore, receiver operating characteristic curve (ROC) analysis identified five candidate proteins detecting non-pregnant heifers, of which SNX5 in day 22 serum had the highest area under the curve (AUC): 0.983. We also detected SNX5 in day 22 serum from non-pregnant heifers using western blotting. These results suggest that high SNX5 in day 22 serum could predict early pregnancy loss in heifers.
Collapse
Affiliation(s)
- Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan;
| | - Rulan Bai
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Yuta Matsuno
- Research Institute of Agriculture, Tokai University, Kumamoto 862-8652, Japan;
| | - Atsushi Ideta
- Zen-Noh Embryo Transfer Center, Fukuoka 810-0001, Japan;
| | - Toshihiro Sakurai
- School of Pharmaceutical Science, Ohu University, Fukushima 963-8611, Japan;
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| | - Masatoshi Hori
- Laboratory of Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Kumamoto 862-8652, Japan;
- Correspondence: ; Tel.: +81-96-386-2652
| |
Collapse
|
4
|
Bridi A, Andrade GM, Del Collado M, Sangalli JR, de Ávila ACFCM, Motta IG, da Silva JCB, Pugliesi G, Silva LA, Meirelles FV, da Silveira JC, Perecin F. Small extracellular vesicles derived from in vivo- or in vitro-produced bovine blastocysts have different miRNAs profiles-Implications for embryo-maternal recognition. Mol Reprod Dev 2021; 88:628-643. [PMID: 34402123 DOI: 10.1002/mrd.23527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
In vivo- and in vitro-produced bovine embryos have different metabolic profiles and differences in gene transcription patterns. These embryos also have a distinct ability to establish and sustain early pregnancies. Small extracellular vesicles (sEVs) are secreted by embryos and carry bioactive molecules, such as miRNAs. We hypothesize that in vivo or in vitro-produced bovine hatched blastocysts on Day 9 and the sEVs secreted by them have different miRNA profiles. To address this hypothesis, embryos of both groups were placed in in vitro culture on Day 7. After 48 h, hatched embryos and hatched embryo-conditioned media (eCM) of both groups were collected. A total of 210 miRNAs were detected in embryos of both groups, of these 6 miRNAs were downregulated, while 7 miRNAs were upregulated in vitro group when compared to in vivo group. sEVs were isolated from eCM to determine miRNA profile. A total of 106 miRNAs were detected in both groups, including 14 miRNAs upregulated in sEVs from in vivo-eCM, and 2 miRNAs upregulated in sEVs from in vitro-eCM. These miRNAs express in embryos and sEVs secreted by them regulate early embryonic developmental and endometrial pathways, which can modify embryo-maternal communication during early pregnancy and consequently affect pregnancy establishment.
Collapse
Affiliation(s)
- Alessandra Bridi
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Gabriella M Andrade
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Maite Del Collado
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Juliano R Sangalli
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Ana C F C M de Ávila
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Igor G Motta
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Júlio C B da Silva
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Guilherme Pugliesi
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Luciano A Silva
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Flávio V Meirelles
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Juliano C da Silveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Felipe Perecin
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| |
Collapse
|
5
|
Rocha CC, da Silveira JC, Forde N, Binelli M, Pugliesi G. Conceptus-modulated innate immune function during early pregnancy in ruminants: a review. Anim Reprod 2021; 18:e20200048. [PMID: 34122650 PMCID: PMC8189353 DOI: 10.1590/1984-3143-ar2020-0048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/16/2021] [Indexed: 11/22/2022] Open
Abstract
This review focuses on the innate immune events modulated by conceptus signaling during early pregnancy in ruminants. Interferon-tau (IFN-τ) plays a role in the recognition of pregnancy in ruminants, which involves more than the inhibition of luteolytic pulses of PGF2α to maintain corpus luteum function. For successful pregnancy establishment, the allogenic conceptus needs to prevent rejection by the female. Therefore, IFN-τ exerts paracrine and endocrine actions to regulate the innate immune system and prevent conceptus rejection. Additionally, other immune regulators work in parallel with IFN-τ, such as the pattern recognition receptors (PRR). These receptors are activated during viral and bacterial infections and in early pregnancy, but it remains unknown whether PPR expression and function are controlled by IFN-τ. Therefore, this review focuses on the main components of the innate immune response that are involved with early pregnancy and their importance to avoid conceptus rejection.
Collapse
Affiliation(s)
- Cecilia Constantino Rocha
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Juliano Coelho da Silveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Niamh Forde
- Discovery and Translational Sciences Department, School of Medicine, University of Leeds, Leeds, Yorkshire, United Kingdom
| | - Mario Binelli
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Guilherme Pugliesi
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Pirassununga, SP, Brasil
| |
Collapse
|
6
|
Husnurrizal H, Siregar TN, Gholib G, Panjaitan B, Armansyah T, Wahyuni S. Profiles of progesterone and bovine interferon-τ in repeat breeding and non-repeat breeding Aceh cows. Vet World 2021; 14:230-236. [PMID: 33642808 PMCID: PMC7896903 DOI: 10.14202/vetworld.2021.230-236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
AIM This study aimed at determining the profiles of progesterone and bovine interferon-τ (bIFN-τ) and the correlation between the two in repeat breeding (RB) Aceh cattle and non-RB Aceh cattle. MATERIALS AND METHODS The study was performed on five RB and five non-RB Aceh cows. These cows were subjected to estrous synchronization using the prostaglandin F2 alpha hormone, which was followed by artificial insemination (AI). Serum samples were collected on days 5, 6, 7, 15, 16, and 17 after AI to measure the concentration of progesterone at the beginning and end of the luteal phase and from days 14 to 18 after AI to measure the concentration of bIFN-τ. The concentrations of progesterone and bIFN-τ were determined using enzyme-linked immunosorbent assay. Pregnancy examinations were performed by ultrasonography on days 25, 35, 45, and 55 after AI. Data for progesterone and bIFN-τ concentrations were analyzed using the Mann-Whitney and t-tests, and the correlation between progesterone and bIFN-τ was analyzed using the Spearman correlation test. RESULTS The average concentration of progesterone in RB Aceh cows tended to be lower than non-RB Aceh cows, but it was not significantly different (p>0.05). Similar results also found in the concentration of bIFN-τ which RB Aceh cows tended to have lower bIFN-τ concentrations compared to non-RB Aceh cows, but it was also not significantly different (p>0.05). Moreover, the concentrations of progesterone and bIFN-τ in RB and non-RB Aceh cows did not show a significant correlation (p>0.05). These results of the ultrasonography showed that non-RB Aceh cows were pregnant from day 25 to day 55 after AI, whereas RB Aceh cows were not pregnant and had early embryonic death. CONCLUSION The concentrations of progesterone and bIFN-τ in non-RB Aceh cows tended to be higher than those in RB Aceh cows, although, it was not significantly different. Non-RB Aceh cows were able to maintain pregnancy until day 55, whereas RB Aceh cows were diagnosed with early embryonic death before day 25 after AI.
Collapse
Affiliation(s)
- Husnurrizal Husnurrizal
- Laboratory of Reproduction, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Tongku Nizwan Siregar
- Laboratory of Reproduction, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Gholib Gholib
- Laboratory of Physiology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Budianto Panjaitan
- Laboratory of Clinic, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Teuku Armansyah
- Laboratory of Pharmacology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Sri Wahyuni
- Laboratory of Anatomy, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| |
Collapse
|
7
|
Rocha CC, da Silva Andrade SC, de Melo GD, Motta IG, Coutinho LL, Gonella-Diaza AM, Binelli M, Pugliesi G. Early pregnancy-induced transcripts in peripheral blood immune cells in Bos indicus heifers. Sci Rep 2020; 10:13733. [PMID: 32792605 PMCID: PMC7426272 DOI: 10.1038/s41598-020-70616-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/08/2020] [Indexed: 01/05/2023] Open
Abstract
Immune cells play a central role in early pregnancy establishment in cattle. We aimed to: (1) discover novel early-pregnancy-induced genes in peripheral blood mononuclear cells (PBMC); and (2) characterize the temporal pattern of early-pregnancy-induced transcription of select genes in PBMC and peripheral blood polymorphonuclear cells (PMN). Beef heifers were artificially inseminated on D0 and pregnancies were diagnosed on D28. On D10, 14, 16, 18, and 20, blood was collected for isolation of PBMC and PMN from heifers that were retrospectively classified as pregnant (P) or non-pregnant (NP). PBMC samples from D18 were submitted to RNAseq and 220 genes were differentially expressed between pregnant (P) and non-pregnant (NP) heifers. The temporal abundance of 20 transcripts was compared between P and NP, both in PBMC and PMN. In PBMC, pregnancy stimulated transcription of IFI6, RSAD2, IFI44, IFITM2, CLEC3B, OAS2, TNFSF13B, DMKN and LGALS3BP as early as D18. Expression of IFI44, RSAD2, OAS2, LGALS3BP, IFI6 and C1R in PMN was stimulated in the P group from D18. The novel early-pregnancy induced genes discovered in beef heifers will allow both the understanding of the role of immune cells during the pre-attachment period and the development of technologies to detect early pregnancies in beef cattle.
Collapse
Affiliation(s)
- Cecilia Constantino Rocha
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | | | - Gabriela Dalmaso de Melo
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Igor Garcia Motta
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Luiz Lehmann Coutinho
- Laboratory of Animal Biotechnology, School of Agriculture Luiz de Queiroz, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Angela Maria Gonella-Diaza
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Marianna, FL, USA
| | - Mario Binelli
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Guilherme Pugliesi
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil.
| |
Collapse
|
8
|
Bridi A, Perecin F, da Silveira JC. Extracellular Vesicles Mediated Early Embryo-Maternal Interactions. Int J Mol Sci 2020; 21:E1163. [PMID: 32050564 PMCID: PMC7037557 DOI: 10.3390/ijms21031163] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 12/23/2022] Open
Abstract
Embryo-maternal crosstalk is an important event that involves many biological processes, which must occur perfectly for pregnancy success. This complex communication starts from the zygote stage within the oviduct and continues in the uterus up to the end of pregnancy. Small extracellular vesicles (EVs) are part of this communication and carry bioactive molecules such as proteins, lipids, mRNA, and miRNA. Small EVs are present in the oviductal and uterine fluid and have important functions during fertilization and early embryonic development. Embryonic cells are able to uptake oviductal and endometrium-derived small EVs. Conversely, embryo-derived EVs might modulate oviductal and uterine function. In this review, our aim is to demonstrate the role of extracellular vesicles modulating embryo-maternal interactions during early pregnancy.
Collapse
|
9
|
Sponchiado M, Gonella-Diaza AM, Rocha CC, Turco EGL, Pugliesi G, Leroy JLMR, Binelli M. The pre-hatching bovine embryo transforms the uterine luminal metabolite composition in vivo. Sci Rep 2019; 9:8354. [PMID: 31175317 PMCID: PMC6555789 DOI: 10.1038/s41598-019-44590-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022] Open
Abstract
In cattle, conceptus development after elongation relies on well-characterized, paracrine interactions with the hosting maternal reproductive tract. However, it was unrecognized previously that the pre-hatching, pre-implantation bovine embryo also engages in biochemical signalling with the maternal uterus. Our recent work showed that the embryo modified the endometrial transcriptome in vivo. Here, we hypothesized that the embryo modulates the biochemical composition of the uterine luminal fluid (ULF) in the most cranial portion of the uterine horn ipsilateral to the corpus luteum. Endometrial samples and ULF were collected post-mortem from sham-inseminated cows and from cows inseminated and detected pregnant 7 days after oestrus. We used quantitative mass spectrometry to demonstrate that the pre-hatching embryo changes ULF composition in vivo. Embryo-induced modulation included an increase in concentrations of lipoxygenase-derived metabolites [12(S)-HETE, 15(S)-HETE] and a decrease in the concentrations of amino acids (glycine), biogenic amines (sarcosine), acylcarnitines and phospholipids. The changed composition of the ULF could be due to secretion or depletion of specific molecules, executed by either the embryo or the endometrium, but initiated by signals coming from the embryo. This study provides the basis for further understanding embryo-initiated modulation of the uterine milieu. Early embryonic signalling may be necessary to guarantee optimal development and successful establishment of pregnancy in cattle.
Collapse
Affiliation(s)
- Mariana Sponchiado
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, Brazil
- Gamete Research Centre, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Angela M Gonella-Diaza
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, Brazil
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Marianna, FL, USA
| | - Cecília C Rocha
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, Brazil
| | - Edson G Lo Turco
- Human Reproduction Section, Division of Urology, Department of Surgery, São Paulo Federal University, Sao Paulo, SP, Brazil
| | - Guilherme Pugliesi
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, Brazil
| | - Jo L M R Leroy
- Gamete Research Centre, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Mario Binelli
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, Brazil.
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|