1
|
Wang K, Suo Y, Shen D, Shi Y, Jin X, Li Y, Li C. Improvement in Heat Stress-Induced Damage to Sperm Quality Following Fecal Microbiota Transplantation from L-Arginine-Treated Mice. Animals (Basel) 2025; 15:796. [PMID: 40150325 PMCID: PMC11939313 DOI: 10.3390/ani15060796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/02/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Heat stress has become a significant concern in animal husbandry, as it adversely affects reproductive performance, particularly sperm quality, through mechanisms that are not fully understood. This study aimed to investigate the protective effects of L-arginine against heat stress-induced sperm damage and explore its potential mechanisms through the modulation of the intestinal microbiota. This study consisted of two experiments. First, in a heat-stressed mouse model, L-arginine was administered to evaluate its effects on the reproductive health of heat-stressed mice. In the second experiment, by transplanting L-arginine-induced changes in the gut microbiota into heat-stressed mice, the protective effects of the microbiota on the sperm of heat-stressed mice were assessed. The findings revealed a significant amelioration of decreased sperm quality and testicular injury induced by heat stress. Post heat stress, mice supplemented with L-arginine presented an increase in seminal vesicle gland weight and index, partial alleviation of testicular tissue morphology, and a substantial increase in testosterone concentration (p < 0.05). Additionally, L-arginine upregulated the expression of testosterone synthesis genes and the mRNA levels of sperm generation-related genes, including 3β-HSD, Stra8, WT1, and Gdnf (p < 0.05). Concurrently, L-arginine-induced microbial communities mitigated heat stress-induced decreases in sperm quality and testicular injury, coupled with increases in the mRNA expression levels of Cyp17a1, 17β-HSD, Plzf, and Gdnf (p < 0.05). Furthermore, there was a reduction in the expression of proinflammatory factors, namely, NFκB, MyD88, TNF-α, and TGF-β3 (p < 0.05). In conclusion, L-arginine may influence the ratio of beneficial bacteria to harmful bacteria in the intestinal microbiota, thereby reducing inflammation caused by heat stress, maintaining intestinal health, and influencing the microenvironment for spermatogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chunmei Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (K.W.); (Y.S.); (D.S.); (Y.S.); (X.J.); (Y.L.)
| |
Collapse
|
2
|
Sahoo B, Mishra B, Bhaskar R, Vikas YNV, Umesh A, Guttula PK, Gupta MK. Analyzing the effect of heparin on in vitro capacitation and spermatozoal RNA population in goats. Int J Biol Macromol 2023; 241:124502. [PMID: 37080410 DOI: 10.1016/j.ijbiomac.2023.124502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023]
Abstract
Heparin is a glycosaminoglycan polymer that is commonly used as an anticoagulant. Heparin also induces in vitro capacitation in spermatozoa, although its molecular mechanism is elusive. This study investigated the effect of heparin on in vitro capacitation and spermatozoal RNA (spRNA) population in goats. Goat spermatozoa were treated with 20 μM heparin for 0-6 h and evaluated for motility, capacitation, acrosome reaction, and spRNA population by RNA sequencing (RNA-seq). It was observed that heparin enhanced sperm motility up to 6 h of incubation (p < 0.05). Heparin also induced capacitation and acrosome reaction within 4 h. RNA-seq identified 1254 differentially expressed genes (DEGs) between heparin-treated and control spermatozoa. Most DEGs (1251 nos.) were upregulated and included 1090 protein-coding genes. A few genes (PRND, ITPR1, LLCFC1, and CHRM2) showed >5-fold increased expression in heparin-treated spermatozoa compared to the control. The upregulated genes were found to be involved in cAMP-PKA, PI3-Akt, calcium, MAPK signaling, and oxidative stress pathways. DCFDA staining confirmed the increased oxidative stress in heparin-treated spermatozoa compared to the control (p < 0.05). In conclusion, the results of the present study suggest that heparin enhances sperm motility and induces capacitation by upregulation of the spRNA population and oxidative stress pathway.
Collapse
Affiliation(s)
- Bijayalaxmi Sahoo
- Gene Manipulation Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha 769 008, India
| | - Balaram Mishra
- Gene Manipulation Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha 769 008, India
| | - Rakesh Bhaskar
- Gene Manipulation Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha 769 008, India
| | - Y N V Vikas
- Gene Manipulation Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha 769 008, India
| | - Anushri Umesh
- Gene Manipulation Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha 769 008, India
| | - Praveen Kumar Guttula
- Gene Manipulation Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha 769 008, India
| | - Mukesh Kumar Gupta
- Gene Manipulation Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha 769 008, India.
| |
Collapse
|
3
|
Xu B, Bai X, Zhang J, Li B, Zhang Y, Su R, Wang R, Wang Z, Lv Q, Zhang J, Li J. Metabolomic analysis of seminal plasma to identify goat semen freezability markers. Front Vet Sci 2023; 10:1132373. [PMID: 36968471 PMCID: PMC10036599 DOI: 10.3389/fvets.2023.1132373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Factors affecting sperm freezability in goat seminal plasma were investigated. Based on the total motility of thawed sperm, goats were divided into a high-freezability (HF) group with >60% total motility (n = 8) and a low-freezability (LF) group with <45% total motility (n = 8). Sperm and seminal plasma from the HF and LF groups were separated, HF seminal plasma was mixed with LF spermatozoa, LF seminal plasma was mixed with HF sperm, and the products were subjected to a freeze-thaw procedure. Semen from individual goats exhibited differences in freezability. HF semen had higher sperm motility parameters and plasma membrane and acrosome integrity after thawing; this difference could be related to the composition of seminal plasma. Seminal plasma from the HF and LF groups was evaluated using metabolomic analysis, and multivariate statistical analysis revealed a clear separation of metabolic patterns in the seminal plasma of goats with different freezability classifications. Forty-one differential metabolites were identified using the following screening conditions: variable importance in the projection > 1 and 0.05 < P-value < 0.1. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed significant enrichment of central carbon metabolism in cancer, protein digestion and absorption, aminoacyl-tRNA, and other pathways and significant differences in the abundance of seven differential metabolites, including L-glutamine, L-aspartate, L-arginine, phenylpyruvate, benzoic acid, ketoisocaproic acid, and choline between seminal plasma from the HF and LF groups (P-value < 0.05). These significantly differentially-expressed metabolites may be potential biomarkers for sperm freezability. L-glutamine, L-aspartate, and L-arginine may directly affect sperm freezability. Benzoic acid, ketoisocaproic acid, and choline may regulate sperm freezability by participating in anabolic processes involving phenylalanine, leucine, and phosphatidylcholine in sperm.
Collapse
Affiliation(s)
- Bingbing Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xue Bai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jian Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Boyuan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Qi Lv
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiaxin Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot, China
- Inner Mongolia Jinlai Animal Husbandry Technology Co., Ltd., Hohhot, China
| |
Collapse
|
4
|
Suprayogi TW, Hardijanto H, Hariadi M, Rantam FA, Darmanto W. Utilization of bull fertility-associated antigen to improve the quality of frozen bull semen. Vet World 2020; 13:2112-2117. [PMID: 33281344 PMCID: PMC7704305 DOI: 10.14202/vetworld.2020.2112-2117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/11/2020] [Indexed: 11/23/2022] Open
Abstract
Background and Aim: The implementation of artificial insemination (AI) is one of the strategies to use superior male semen optimally to improve the genetic quality of livestock. One of the factors that influence AI is a fertility-associated antigen (FAA). This research aimed to examine the effects of FAA extracted from the accessory sex glands of a bull from a slaughterhouse that was added in bull semen freezing medium to increase cattle (bull) fertilization. Materials and Methods: This research used a randomized complete block design. It consisted of two research phases, namely, explorative and experimental phases. The first phase involved determining the FAA molecular weight using the SDS-PAGE method, and the second phase consisted of laboratory and field testing, including testing the quality of frozen semen supplemented with FAA extracted from the accessory glands of a bull’s genital organ from a slaughterhouse with various doses (0, 5, 10, and 15 μg in every 200 million progressively motile spermatozoa). Results: The results showed that the percentages of bull sperm motility between the groups without and with the additional administration of FAA with a dose of 5 μg did not significantly differ. However, there was a difference between the groups without and with the additional administration of FAA with doses of 10 and 15 μg. After further testing, the highest percentage of sperm progressive motility occurred at a dose of 15 μg/200 million progressively motile spermatozoa (P3), which was equal to 2.59±46.88b (%). Conclusion: This research found that not all of the accessory glands (seminal vesicles) of bulls taken from the slaughterhouse contain the FAA. An FAA level between the accessory glands (seminal vesicles) of one cattle to another is different. The addition of the FAA protein from the accessory sex glands of a bull’s organ in cattle semen can improve fertility by increasing the percentage of viability, motility, intact plasma membrane of spermatozoa, and pregnancy rate of bulls and decreasing the sperm capacitation post-thawing.
Collapse
Affiliation(s)
- Tri Wahyu Suprayogi
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Hardijanto Hardijanto
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Mas'ud Hariadi
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Fedik Abdul Rantam
- Department of Microbiology and Virology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Win Darmanto
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|