1
|
Szabo R, Petrisor C, Bodolea C, Simon R, Maries I, Tranca S, Mocan T. Hyperferritinemia, Low Circulating Iron and Elevated Hepcidin May Negatively Impact Outcome in COVID-19 Patients: A Pilot Study. Antioxidants (Basel) 2022; 11:antiox11071364. [PMID: 35883855 PMCID: PMC9311882 DOI: 10.3390/antiox11071364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammation in COVID-19 produces intracellular iron overload with low circulating iron available for metabolic processes. The accumulated intracellular iron generates reactive species of oxygen and results in ferroptosis, a non-programmed cell death. Since no organ is spared, iron dysmetabolism increases the mortality and morbidity. Hepcidin and the mediator interleukin 6 are believed to play a role in the process. Our aim is to evaluate the predictive values of serologic iron and inflammatory parameters in COVID-19 critically ill patients. Hence, 24 patients were included. Hepcidin and interleukin 6, along with routine blood parameters, were determined and outcomes, such as death, multiple organ damage (MOD), anemia, and need for transfusions, were assessed. The results of this pilot study indicate that iron metabolism parameters individually, as well as models consisting of multiple laboratory and clinical variables, may predict the outcomes. Further larger studies are needed to validate the results of this pilot stud. However, this paper identifies a new direction for research.
Collapse
Affiliation(s)
- Robert Szabo
- Physiology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (R.S.); (T.M.)
- Anaesthesia II Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (C.P.); (R.S.); (I.M.); (S.T.)
- Clinical County Emergency Hospital, 400000 Cluj-Napoca, Romania
| | - Cristina Petrisor
- Anaesthesia II Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (C.P.); (R.S.); (I.M.); (S.T.)
- Clinical County Emergency Hospital, 400000 Cluj-Napoca, Romania
| | - Constantin Bodolea
- Anaesthesia II Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (C.P.); (R.S.); (I.M.); (S.T.)
- Municipal Clinical Hospital, 400139 Cluj-Napoca, Romania
- Correspondence:
| | - Robert Simon
- Anaesthesia II Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (C.P.); (R.S.); (I.M.); (S.T.)
| | - Ioana Maries
- Anaesthesia II Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (C.P.); (R.S.); (I.M.); (S.T.)
| | - Sebastian Tranca
- Anaesthesia II Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (C.P.); (R.S.); (I.M.); (S.T.)
- Clinical County Emergency Hospital, 400000 Cluj-Napoca, Romania
| | - Teodora Mocan
- Physiology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (R.S.); (T.M.)
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology, 400000 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Iron, Copper, and Zinc Homeostasis: Physiology, Physiopathology, and Nanomediated Applications. NANOMATERIALS 2021; 11:nano11112958. [PMID: 34835722 PMCID: PMC8620808 DOI: 10.3390/nano11112958] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
Understanding of how the human organism functions has preoccupied researchers in medicine for a very long time. While most of the mechanisms are well understood and detailed thoroughly, medicine has yet much to discover. Iron (Fe), Copper (Cu), and Zinc (Zn) are elements on which organisms, ranging from simple bacteria all the way to complex ones such as mammals, rely on these divalent ions. Compounded by the continuously evolving biotechnologies, these ions are still relevant today. This review article aims at recapping the mechanisms involved in Fe, Cu, and Zn homeostasis. By applying the knowledge and expanding on future research areas, this article aims to shine new light of existing illness. Thanks to the expanding field of nanotechnology, genetic disorders such as hemochromatosis and thalassemia can be managed today. Nanoparticles (NPs) improve delivery of ions and confer targeting capabilities, with the potential for use in treatment and diagnosis. Iron deficiency, cancer, and sepsis are persisting major issues. While targeted delivery using Fe NPs can be used as food fortifiers, chemotherapeutic agents against cancer cells and microbes have been developed using both Fe and Cu NPs. A fast and accurate means of diagnosis is a major impacting factor on outcome of patients, especially when critically ill. Good quality imaging and bed side diagnostic tools are possible using NPs, which may positively impact outcome.
Collapse
|