1
|
Yang R, Xiang D, Yuan F, Yang Y, Wang P, Xu B, Li X. Unraveling Neurotoxicity Discrepancies: Comparative In vitro and In vivo Analysis of Colistin and Polymyxin B and the Underlying Mechanisms. Mol Neurobiol 2025; 62:4562-4575. [PMID: 39467983 DOI: 10.1007/s12035-024-04577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Polymyxins, including colistin and polymyxin B, are the final resort against Gram-negative bacterial infections. However, its clinical application is restricted due to concerns related to neurotoxicity. Despite the similar antibacterial spectrum and mode of action shared between colistin and polymyxin B, there is still a lack of definitive evidence to support the idea that their neurotoxicity profiles are identical. To comprehensively compare the neurotoxicity between colistin and polymyxin B both in vivo and in vitro and establish a theoretical foundation to guide the rational use of polymyxins within clinical settings. in vitro experiments simulated nerve damage by exposing N2a and RSC96 cells to colistin and polymyxin B. The evaluation of nerve injury included assessments of cell viability and apoptosis. To discern the variance in the mechanisms of nerve injury between colistin and polymyxin B, oxidative stress levels were examined, such as SOD, CAT, GSH, and malondialdehyde (MDA). In in vivo experiments, a rat nerve injury model was created by intraventricular injections of colistin and polymyxin B, respectively. The impact of these drugs on brain injury in rats, particularly within the hippocampus and medulla oblongata, was measured using HE and Nissl staining. The potential influence of polymyxins on the ferroptosis pathway was evaluated by assessing LPO and Fe2+ levels and the degree of mitochondrial impairment. At equivalent doses, colistin demonstrated a reduced level of neurotoxicity compared to polymyxin B, both in vitro and in vivo. in vitro experiments revealed greater cell viability and a lower apoptosis rate after colistin treatment than after polymyxin B treatment. This variance in outcomes could be attributed to the comparatively lower levels of oxidative stress associated with colistin administration. In a rat model, nerve injury resulted in observable damage to both the hippocampus and the medulla oblongata. A comprehensive assessment of the extent of damage in the CA1 to CA4 regions of the hippocampus, and the solitary tract nucleus of the medulla oblongata underscored that the neurotoxic effects of colistin remained milder compared to those elicited by polymyxin B. Even when evaluated at equivalent multiples of clinically recommended doses, colistin exhibited lower neurotoxicity in vivo than polymyxin B. For the first time, this study demonstrated the role of ferroptosis in polymyxin B-induced nerve damage. The activation levels observed within the ferroptosis pathway due to polymyxin B exceeded those triggered by colistin. Colistin exhibited a marked reduction in neurotoxicity compared to polymyxin B, evident in both the equivalent and clinically recommended doses. These findings suggest that, from the perspective of neurotoxicity, colistin presents a more favorable option for clinical use.
Collapse
Affiliation(s)
- Rui Yang
- Hunan University of Chinese Medicine, Changsha, China
- The Third Hospital of Changsha, Changsha, China
| | - Debiao Xiang
- The Third Hospital of Changsha, Changsha, China
- Antibiotic Clinical Application Research Institute of Changsha, Changsha, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, China
| | - Fang Yuan
- The Third Hospital of Changsha, Changsha, China
- Antibiotic Clinical Application Research Institute of Changsha, Changsha, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, China
| | - Yuan Yang
- Hunan University of Chinese Medicine, Changsha, China
- The Third Hospital of Changsha, Changsha, China
| | - Pengkai Wang
- Hunan University of Chinese Medicine, Changsha, China
- The Third Hospital of Changsha, Changsha, China
| | - Bing Xu
- The Third Hospital of Changsha, Changsha, China
- Antibiotic Clinical Application Research Institute of Changsha, Changsha, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, China
| | - Xin Li
- The Third Hospital of Changsha, Changsha, China.
- Antibiotic Clinical Application Research Institute of Changsha, Changsha, China.
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, China.
| |
Collapse
|
2
|
Chin AXY, Ng KWP, Chan YC, Goh Y, Rathakrishnan R. Polymyxin-induced neuromuscular weakness: a case report. Front Neurol 2024; 15:1342419. [PMID: 38601335 PMCID: PMC11004478 DOI: 10.3389/fneur.2024.1342419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
Polymyxin-induced neuromuscular blockade is a rare but potentially fatal condition, with majority of cases that were reported between 1962 and 1973. We describe a patient who developed hypercapnic respiratory failure after initiation of polymyxin for multi-drug resistant Escherichia Coli bacteremia, due to polymyxin-induced neuromuscular dysfunction. After cessation of polymyxin, he regained full strength, had complete resolution of ptosis, and was successfully extubated. In light of the renewed use of polymyxin in this era of antimicrobial-resistance, this case aims to raise awareness about this rare but life-threatening condition, which is easily reversible with early recognition and prompt discontinuation of the drug.
Collapse
Affiliation(s)
- Amanda X. Y. Chin
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kay W. P. Ng
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yee Cheun Chan
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yihui Goh
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rahul Rathakrishnan
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
| |
Collapse
|
3
|
Bayraktar I, Halacli B, Demirkan K, Topeli A. Polymyxin B-related neurotoxicity: a brief case report. Eur J Hosp Pharm 2023; 31:66-67. [PMID: 37286311 PMCID: PMC10800244 DOI: 10.1136/ejhpharm-2023-003786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Polymyxin B and colistin are considered the last therapeutic option to treat infections caused by highly drug-resistant bacteria. However, their administration may lead to various adverse effects such as nephrotoxicity, neurotoxicity, and allergic reactions. The current case report presents the clinical manifestation of polymyxin B-associated neurotoxicity in a female patient with no chronic illness history. The patient was rescued from under rubble during an earthquake. She was diagnosed with an intra-abdominal infection caused by Acinetobacter baumannii (A. baumannii) After the initiation of the polymyxin B infusion, the patient developed numbness and tingling sensations in her hands, face, and head. On discontinuing polymyxin B and starting colistimethate, the patient's symptoms improved. Therefore, healthcare professionals should be aware of the potential risk factors associated with neurotoxicity in patients receiving polymyxin B. On identifying such symptoms treatment should be discontinued promptly to prevent further neurological damage.
Collapse
Affiliation(s)
- Izgi Bayraktar
- Department of Clinical Pharmacy, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Burcin Halacli
- Department of Internal Medicine, Division of Intensive Care Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Kutay Demirkan
- Department of Clinical Pharmacy, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Arzu Topeli
- Department of Internal Medicine, Division of Intensive Care Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
4
|
Simon V, Viswam A, Alexander PS, James E, Sudhindran S. Colistin versus polymyxin B: A pragmatic assessment of renal and neurological adverse effects and effectiveness in multidrug-resistant Gram-negative bacterial infections. Indian J Pharmacol 2023; 55:229-236. [PMID: 37737075 PMCID: PMC10657617 DOI: 10.4103/ijp.ijp_762_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVES Our study aimed to evaluate the real-world data on renal and neurological adverse effects and effectiveness of colistimethate sodium (CMS) and polymyxin B (PMB). MATERIALS AND METHODS An observational prospective study was performed on inpatients receiving CMS and PMB for multidrug-resistant Gram-negative bacterial infections. CMS dose was titrated to renal function, and serum creatinine was assessed daily. The incidence of nephrotoxicity, the primary outcome, was evaluated based on an increase in serum creatinine from baseline as well as by the Risk, Injury, Failure, Loss of kidney function, and End-stage renal disease criteria. Neurological adverse effects were assessed based on clinical signs and symptoms, and the causality and severity were assessed by the Naranjo scale and modified Hartwig-Siegel scale, respectively. The effectiveness of polymyxin therapy was ascertained by a composite of microbiological eradication of causative bacteria and achievement of clinical cure. Thirty-day all-cause mortality was also determined. RESULTS Between CMS and PMB, the incidence of nephrotoxicity (59.3% vs. 55.6%, P = 0.653) or neurotoxicity (8.3% vs. 5.6%, P = 0.525) did not significantly differ. However, reversal of nephrotoxicity was significantly more with patients receiving CMS than PMB (48.4% vs. 23.3%, P = 0.021). Favorable clinical outcomes (67.6% vs. 37%, P < 0.001) and microbiological eradication of causative bacteria (73.1% vs. 46.3%, P = 0.001) were significantly more with CMS than PMB. Patients treated with CMS had lower all-cause mortality than those with PMB treatment (19.4% vs. 42.6%, P = 0.002). CONCLUSION There is no significant difference in the incidence of renal and neurotoxic adverse effects between CMS and PMB when CMS is administered following renal dose modification. CMS shows better effectiveness and lower mortality compared to PMB.
Collapse
Affiliation(s)
- Veneta Simon
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Health Science Campus, Kochi, Kerala, India
| | - Aathira Viswam
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Health Science Campus, Kochi, Kerala, India
| | - Pallavi Sarah Alexander
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Health Science Campus, Kochi, Kerala, India
| | - Emmanuel James
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Health Science Campus, Kochi, Kerala, India
| | - S Sudhindran
- Department of GI Surgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Health Science Campus, Kochi, Kerala, India
| |
Collapse
|
5
|
Liew YX, Lee HLW, Lim TP, Teo JQM, Chlebicki MP, Chung SJ, Kwa ALH. High-concentration polymyxin B infusion: is it safe to give? Int J Antimicrob Agents 2023; 61:106688. [PMID: 36402447 DOI: 10.1016/j.ijantimicag.2022.106688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/29/2022] [Accepted: 11/06/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Yi Xin Liew
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore, Singapore
| | - Hui-Ling Winnie Lee
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore, Singapore
| | - Tze-Peng Lim
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore, Singapore; Singhealth Duke-NUS Medicine Academic Clinical Programme, Singapore, Singapore; Singhealth Duke-NUS Pathology Academic Clinical Programme, Singapore, Singapore
| | - Jocelyn Qi-Min Teo
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore, Singapore
| | - Maciej Piotr Chlebicki
- Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Shimin Jasmine Chung
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - Andrea Lay Hoon Kwa
- Department of Pharmacy, Singapore General Hospital, Outram Road, Singapore, Singapore; Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore; Singhealth Duke-NUS Medicine Academic Clinical Programme, Singapore, Singapore.
| |
Collapse
|
6
|
Yu Z, Liu X, Du X, Chen H, Zhao F, Zhou Z, Wang Y, Zheng Y, Bergen PJ, Li X, Sun R, Fang L, Li W, Fan Y, Wu H, Guo B, Li J, Yu Y, Zhang J. Pharmacokinetics/pharmacodynamics of polymyxin B in patients with bloodstream infection caused by carbapenem-resistant Klebsiella pneumoniae. Front Pharmacol 2022; 13:975066. [PMID: 36588676 PMCID: PMC9800617 DOI: 10.3389/fphar.2022.975066] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction: Polymyxin B is a last-line therapy for carbapenem-resistant microorganisms. However, a lack of clinical pharmacokinetic/pharmacodynamic (PK/PD) data has substantially hindered dose optimization and breakpoint setting. Methods: A prospective, multi-center clinical trial was undertaken with polymyxin B [2.5 mg/kg loading dose (3-h infusion), 1.25 mg/kg/12 h maintenance dose (2-h infusion)] for treatment of carbapenem-resistant K. pneumoniae (CRKP) bloodstream infections (BSI). Safety, clinical and microbiological efficacy were evaluated. A validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was applied to determine the concentrations of polymyxin B in blood samples. Population pharmacokinetic (PK) modeling and Monte Carlo simulations were conducted to examine the susceptibility breakpoint for polymyxin B against BSI caused by CRKP. Results: Nine patients were enrolled and evaluated for safety. Neurotoxicity (5/9), nephrotoxicity (5/9), and hyperpigmentation (1/9) were recorded. Blood cultures were negative within 3 days of commencing therapy in all 8 patients evaluated for microbiological efficacy, and clinical cure or improvement occurred in 6 of 8 patients. Cmax and Cmin following the loading dose were 5.53 ± 1.80 and 1.62 ± 0.41 mg/L, respectively. With maintenance dosing, AUCss,24 h was 79.6 ± 25.0 mg h/L and Css,avg 3.35 ± 1.06 mg/L. Monte Carlo simulations indicated that a 1 mg/kg/12-hourly maintenance dose could achieve >90% probability of target attainment (PTA) for isolates with minimum inhibitory concentration (MIC) ≤1 mg/L. PTA dropped substantially for MICs ≥2 mg/L, even with a maximally recommended daily dose of 1.5 mg/kg/12-hourly. Conclusion: This is the first clinical PK/PD study evaluating polymyxin B for BSI. These results will assist to optimize polymyxin B therapy and establish its breakpoints for CRKP BSI.
Collapse
Affiliation(s)
- Zhenwei Yu
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoxing Du
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huiying Chen
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Zhao
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhihui Zhou
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Zheng
- Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Phillip J. Bergen
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Xi Li
- Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Renhua Sun
- Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Li Fang
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wanzhen Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaxin Fan
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Hailan Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Beining Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Yunsong Yu
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China,*Correspondence: Yunsong Yu, ; Jing Zhang,
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China,Phase I Clinical Trial Center, Huashan Hospital, Fudan University, Shanghai, China,*Correspondence: Yunsong Yu, ; Jing Zhang,
| |
Collapse
|
7
|
Zhou Y, Li Y, Xie X, Song L, Lan G, Sun B, Tang T, Yan H, Zhang B, Xu P. Higher Incidence of Neurotoxicity and Skin Hyperpigmentation in Renal Transplant Patients Treated With Polymyxin B. Br J Clin Pharmacol 2022; 88:4742-4750. [PMID: 35508710 DOI: 10.1111/bcp.15384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Toxicity is a major concern related to the clinical use of polymyxin B, and available safety data for renal transplant patients are limited. AIMS We investigated the safety of polymyxin B and toxicity risk factors in renal transplant patients. METHODS A prospective study was performed on a group of renal transplant patients who received intravenous polymyxin B between January 2018 and August 2021. Polymyxin B treatment was monitored to evaluate toxicity and risk factors. RESULTS A total of 235 courses of polymyxin B were administered to 213 patients. Of these, 121 (51.5%) developed SH, 149 (63.4%) developed neurotoxicity, and 10 (5.5%) developed acute kidney injury of which 80% was reversible. Risk factors for developing SH included a high total dose by weight (OR=1.31, 95%CI: 1.08-1.60, p=0.008) and the presence of neurotoxicity (OR=2.86, 95%CI: 1.56-5.26, p=0.001). Neurotoxicity manifested during the first two days of treatment. Neurotoxicity occurred most commonly in women (OR=3.84, 95%CI: 1.82-8.10, p<0.0001), and the presence of SH (OR=1.98, 95%CI: 1.13-3.46, p=0.016) was also an independent risk factor. CONCLUSIONS Neurotoxicity and SH are the two major adverse effects of polymyxin B in renal transplant patients, which may limit its clinical use.
Collapse
Affiliation(s)
- Yangang Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ying Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xubiao Xie
- Department of Kidney Transplantation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lei Song
- Department of Kidney Transplantation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Gongbin Lan
- Department of Kidney Transplantation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Tiantian Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Han Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ping Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
8
|
Bian X, Qu X, Zhang J, Nang SC, Bergen PJ, Tony Zhou Q, Chan HK, Feng M, Li J. Pharmacokinetics and pharmacodynamics of peptide antibiotics. Adv Drug Deliv Rev 2022; 183:114171. [PMID: 35189264 PMCID: PMC10019944 DOI: 10.1016/j.addr.2022.114171] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/23/2022] [Accepted: 02/16/2022] [Indexed: 01/05/2023]
Abstract
Antimicrobial resistance is a major global health challenge. As few new efficacious antibiotics will become available in the near future, peptide antibiotics continue to be major therapeutic options for treating infections caused by multidrug-resistant pathogens. Rational use of antibiotics requires optimisation of the pharmacokinetics and pharmacodynamics for the treatment of different types of infections. Toxicodynamics must also be considered to improve the safety of antibiotic use and, where appropriate, to guide therapeutic drug monitoring. This review focuses on the pharmacokinetics/pharmacodynamics/toxicodynamics of peptide antibiotics against multidrug-resistant Gram-negative and Gram-positive pathogens. Optimising antibiotic exposure at the infection site is essential for improving their efficacy and minimising emergence of resistance.
Collapse
Affiliation(s)
- Xingchen Bian
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; School of Pharmacy, Fudan University, Shanghai, China
| | - Xingyi Qu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; School of Pharmacy, Fudan University, Shanghai, China; Phase I Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Phase I Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Phillip J Bergen
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Meiqing Feng
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia.
| |
Collapse
|
9
|
Vaudin P, Augé C, Just N, Mhaouty-Kodja S, Mortaud S, Pillon D. When pharmaceutical drugs become environmental pollutants: Potential neural effects and underlying mechanisms. ENVIRONMENTAL RESEARCH 2022; 205:112495. [PMID: 34883077 DOI: 10.1016/j.envres.2021.112495] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/12/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutical drugs have become consumer products, with a daily use for some of them. The volume of production and consumption of drugs is such that they have become environmental pollutants. Their transfer to wastewater through urine, feces or rinsing in case of skin use, associated with partial elimination by wastewater treatment plants generalize pollution in the hydrosphere, including drinking water, sediments, soils, the food chain and plants. Here, we review the potential effects of environmental exposure to three classes of pharmaceutical drugs, i.e. antibiotics, antidepressants and non-steroidal anti-inflammatory drugs, on neurodevelopment. Experimental studies analyzing their underlying modes of action including those related to endocrine disruption, and molecular mechanisms including epigenetic modifications are presented. In addition, the contribution of brain imaging to the assessment of adverse effects of these three classes of pharmaceuticals is approached.
Collapse
Affiliation(s)
- Pascal Vaudin
- Physiologie de La Reproduction et des Comportements, CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France.
| | - Corinne Augé
- UMR 1253, IBrain, University of Tours, INSERM, 37000, Tours, France
| | - Nathalie Just
- Physiologie de La Reproduction et des Comportements, CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Stéphane Mortaud
- Immunologie et Neurogénétique Expérimentales et Moléculaires, UMR7355, CNRS, Université D'Orléans, 45000, Orléans, France
| | - Delphine Pillon
- Physiologie de La Reproduction et des Comportements, CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| |
Collapse
|
10
|
Li J, Luo H, Wang X, Liu L, Feng Z, Tian H, Li Z, Xie Y, Wang S. Exploring the active ingredients and mechanism of qianglidingxuan tablets for vertigo based on network pharmacology and molecular docking. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
11
|
Falagas ME, Kyriakidou M, Voulgaris GL, Vokos F, Politi S, Kechagias KS. Clinical use of intravenous polymyxin B for the treatment of patients with multidrug-resistant Gram-negative bacterial infections: An evaluation of the current evidence. J Glob Antimicrob Resist 2021; 24:342-359. [PMID: 33486122 DOI: 10.1016/j.jgar.2020.12.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/01/2020] [Accepted: 12/31/2020] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES The epidemic dimensions of the emergence of multidrug-resistant (MDR) Gram-negative bacterial infections have led to the revival of old antibiotics, including the polymyxins. METHODS We performed a review and meta-analysis to evaluate the current literature data regarding the effectiveness and safety of intravenous polymyxin B in patients with MDR Gram-negative bacterial infections and the overall mortality and nephrotoxicity in patients treated with intravenous polymyxin B either as monotherapy or combination therapy. RESULTS A total of 5 prospective and 28 retrospective studies, 1 cross-sectional study, 2 retrospective case series and 7 case reports provided data regarding the effectiveness and/or toxicity of intravenous polymyxin B. All-cause mortality of 2910 patients (from 27 studies) who received intravenous polymyxin B was 41.2% (95% CI 35.5-47.0%). All-cause nephrotoxicity of 2994 patients (from 28 studies) treated with intravenous polymyxin B was 40.7% (95% CI 35.0-46.6%). Renal failure among 2111 patients (from 14 studies) was 11.2% (95% CI 8.7-13.9%). CONCLUSION Mortality of patients treated with intravenous polymyxin B is similar to the literature-reported mortality of patients treated with intravenous colistin, while nephrotoxicity associated with polymyxin B use is possibly milder compared with colistin use based on literature data. Head-to-head prospective studies would help to clarify the benefit of polymyxin B over colistin. However, a critical evaluation of the existing worldwide literature data supports the need for availability of the intravenous formulation of polymyxin B as a potentially useful option for the treatment of patients with MDR and extensively drug-resistant (XDR) Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Matthew E Falagas
- Alfa Institute of Biomedical Sciences, Athens, Greece; Department of Medicine, Henry Dunant Hospital Center, Athens, Greece; Department of Medicine, Tufts University School of Medicine, Boston, MA, USA.
| | - Margarita Kyriakidou
- Alfa Institute of Biomedical Sciences, Athens, Greece; School of Applied Mathematical and Physical Sciences, National Technical University, Athens, Greece
| | - Georgios L Voulgaris
- Alfa Institute of Biomedical Sciences, Athens, Greece; Laboratory of Pharmacokinetics and Toxicology, Department of Pharmacy, 401 General Military Hospital, Athens, Greece
| | - Filippos Vokos
- School of Applied Mathematical and Physical Sciences, National Technical University, Athens, Greece
| | - Sevasti Politi
- School of Applied Mathematical and Physical Sciences, National Technical University, Athens, Greece
| | | |
Collapse
|
12
|
Dai C, Xiong J, Wang Y, Shen J, Velkov T, Xiao X. Nerve Growth Factor Confers Neuroprotection against Colistin-Induced Peripheral Neurotoxicity. ACS Infect Dis 2020; 6:1451-1459. [PMID: 32422040 DOI: 10.1021/acsinfecdis.0c00107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurotoxicity is an unwanted side effect for patients when receiving parenteral colistin therapy. The development of effective neuroprotective agents that can be coadministered during colistin therapy remains a priority area in antimicrobial chemotherapy. The present study aimed to investigate the protective effect of nerve growth factor (NGF) against colistin-induced peripheral neurotoxicity using a murine model. C57BL/6 mice were randomly divided into the following 6 groups: (i) untreated control, (ii) NGF alone (36 μg/kg/day administered intraperitoneally), (iii) colistin alone (18 mg/kg/day administered intraperitoneally), and (iv-vi) colistin (18 mg/kg/day) plus NGF (9, 18, and 36 μg/kg/day). After treatment for 7 days, neurobehavioral and electrophysiology changes, histopathological assessments of sciatic nerve damage, and oxidative stress biomarkers were examined. The mRNA expression levels of Nrf2, HO-1, Akt, Bax, and caspase-3 and -9 were assessed using quantitative RT-PCR. The results showed that, across all the groups wherein NGF was coadministered with colistin, a marked attenuation of colistin-induced sciatic nerve damage and improved sensory and motor function were observed. In comparison to the colistin only treatment group, animals that received NGF displayed upregulated Nrf2 and HO-1 mRNA expression levels and downregulated Bax and caspase-3 and -9 mRNA expression levels. In summary, our study reveals that NGF coadministration protects against colistin-induced peripheral neurotoxicity via the activation of Akt and Nrf2/HO-1 pathways and inhibition of oxidative stress. This study highlights the potential clinical application of NGF as a neuroprotective agent for coadministration during colistin therapy.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Jianli Xiong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, P. R. China
| | - Yang Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
13
|
Dai C, Wang Y, Sharma G, Shen J, Velkov T, Xiao X. Polymyxins-Curcumin Combination Antimicrobial Therapy: Safety Implications and Efficacy for Infection Treatment. Antioxidants (Basel) 2020; 9:antiox9060506. [PMID: 32526966 PMCID: PMC7346118 DOI: 10.3390/antiox9060506] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
The emergence of antimicrobial resistance in Gram-negative bacteria poses a huge health challenge. The therapeutic use of polymyxins (i.e., colistin and polymyxin B) is commonplace due to high efficacy and limiting treatment options for multidrug-resistant Gram-negative bacterial infections. Nephrotoxicity and neurotoxicity are the major dose-limiting factors that limit the therapeutic window of polymyxins; nephrotoxicity is a complication in up to ~60% of patients. The emergence of polymyxin-resistant strains or polymyxin heteroresistance is also a limiting factor. These caveats have catalyzed the search for polymyxin combinations that synergistically kill polymyxin-susceptible and resistant organisms and/or minimize the unwanted side effects. Curcumin—an FDA-approved natural product—exerts many pharmacological activities. Recent studies showed that polymyxins–curcumin combinations showed a synergistically inhibitory effect on the growth of bacteria (e.g., Gram-positive and Gram-negative bacteria) in vitro. Moreover, curcumin co-administration ameliorated colistin-induced nephrotoxicity and neurotoxicity by inhibiting oxidative stress, mitochondrial dysfunction, inflammation and apoptosis. In this review, we summarize the current knowledge-base of polymyxins–curcumin combination therapy and discuss the underlying mechanisms. For the clinical translation of this combination to become a reality, further research is required to develop novel polymyxins–curcumin formulations with optimized pharmacokinetics and dosage regimens.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
- Correspondence: (C.D.); (X.X.); Tel.: +86-156-5282-6026 (C.D.); +86-010-6273-3377 (X.X.)
| | - Yang Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
| | - Gaurav Sharma
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Jianzhong Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, Faculty of Medicine, School of Biomedical Sciences, Dentistry and Health Sciences, the University of Melbourne, Parkville 3052, Australia;
| | - Xilong Xiao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
- Correspondence: (C.D.); (X.X.); Tel.: +86-156-5282-6026 (C.D.); +86-010-6273-3377 (X.X.)
| |
Collapse
|
14
|
Dai C, Xiao X, Zhang Y, Xiang B, Hoyer D, Shen J, Velkov T, Tang S. Curcumin Attenuates Colistin-Induced Peripheral Neurotoxicity in Mice. ACS Infect Dis 2020; 6:715-724. [PMID: 32037797 DOI: 10.1021/acsinfecdis.9b00341] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Peripheral neurotoxicity often occurs in patients receiving parenteral polymyxin therapy (i.e., colistin methanesulfonate or polymyxin B). The present study aimed to investigate the protective effect of curcumin on colistin-induced peripheral neurotoxicity using a murine model. Female C57BL/6 mice (n = 10 in each group) were randomly divided into the following: (1) control group (saline), (2) curcumin only group (200 mg/kg/day; orally), (3) colistin only group (18 mg/kg/day; i.p.), (4) colistin (18 mg/kg/day) plus curcumin 50 mg/kg/day group, (5) colistin (18 mg/kg/day) plus curcumin 100 mg/kg/day group, (6) colistin (18 mg/kg/day) plus curcumin 200 mg/kg/day group; all mice were treated for 7 days. Orally applied curcumin was detected in the brain, cerebellum, and sciatic nerve. Co-administration of oral curcumin markedly improved colistin-induced impaired sensory and motor dysfunctions in a dose-dependent manner. Curcumin supplementation at 100 and 200 mg/kg significantly decreased lipid peroxidation and upregulated catalase (CAT) and superoxide dismutase (SOD) activities, ATP levels, and Na+/K+-ATPase activity in sciatic nerve tissue, compared to the colistin alone group. Curcumin supplementation at 200 mg/kg upregulated the levels of AKT, NGF, mTOR, Nrf2, and HO-1 mRNA and concomitantly downregulated Bax, caspases-3, and -9 mRNA; it also decreased caspase-3 and caspase-9 activity. In summary, for the first time, our study reveals that the protective effect of oral curcumin on colistin induced peripheral neurotoxicity is associated with the activation of NGF/Akt and Nrf2/HO-1 pathways and inhibition of oxidative stress. This study highlights the potential clinical application of curcumin as an oral neuroprotective agent coadministered during colistin therapy.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Yuan Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Biao Xiang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Daniel Hoyer
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
15
|
Wang J, Ishfaq M, Xu L, Xia C, Chen C, Li J. METTL3/m 6A/miRNA-873-5p Attenuated Oxidative Stress and Apoptosis in Colistin-Induced Kidney Injury by Modulating Keap1/Nrf2 Pathway. Front Pharmacol 2019; 10:517. [PMID: 31156435 PMCID: PMC6530351 DOI: 10.3389/fphar.2019.00517] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/24/2019] [Indexed: 11/25/2022] Open
Abstract
Nephrotoxicity of colistin is the major factor limiting its clinical application. However, the exact mechanism of colistin-induced nephrotoxicity is still elusive. N6-Methyladenosine (m6A) modification has been implicated in many biological processes, however, its role in colistin-induced nephrotoxicity needs to be elucidated. Mouse renal tubular epithelial cells (mRTECs) were treated with 200 μM colistin with or without METTL3 overexpression. Cells injury, m6A assay, oxidative stress and apoptosis were examined. Levels of m6A are decreased after colistin treatment in mRTECs. METTL3 is the major factor involved in abnormal m6A modification. METTL3 overexpression plays a protective role against colistin-induced oxidative stress and apoptosis. Moreover, METTL3 interacts with the microprocessor protein DGCR8 and positively modulates miR-873-5p mature process in an m6A-dependent manner. Further experiments show that miR-873-5p could regulate Keap1-Nrf2 pathway against colistin-induced oxidative stress and apoptosis. These studies revealed an important role of METTL3/m6A in colistin-induced nephrotoxicity and provide a new insight on m6A modification in drug induced toxicity.
Collapse
Affiliation(s)
- Jian Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Muhammad Ishfaq
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Liang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chunli Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chunli Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| |
Collapse
|
16
|
Dai C, Xiao X, Li J, Ciccotosto GD, Cappai R, Tang S, Schneider-Futschik EK, Hoyer D, Velkov T, Shen J. Molecular Mechanisms of Neurotoxicity Induced by Polymyxins and Chemoprevention. ACS Chem Neurosci 2019; 10:120-131. [PMID: 30362702 DOI: 10.1021/acschemneuro.8b00300] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neurotoxicity is one major unwanted side-effects associated with polymyxin (i.e., colistin and polymyxin B) therapy. Clinically, colistin neurotoxicity is characterized by neurological symptoms including dizziness, visual disturbances, vertigo, confusion, hallucinations, seizures, ataxia, and facial and peripheral paresthesias. Pathologically, colistin-induced neurotoxicity is characterized by cell injury and death in neuronal cell. This Review covers our current understanding of polymyxin-induced neurotoxicity, its underlying mechanisms, and the discovery of novel neuroprotective agents to limit this neurotoxicity. In recent years, an increasing body of literature supports the notion that polymyxin-induced nerve damage is largely related to oxidative stress and mitochondrial dysfunction. P53, PI3K/Akt, and MAPK pathways are also involved in colistin-induced neuronal cell death. The activation of the redox homeostasis pathways such as Nrf2/HO-1 and autophagy have also been shown to play protective roles against polymyxin-induced neurotoxicity. These pathways have been demonstrated to be upregulated by neuroprotective agents including curcumin, rapamycin and minocycline. Further research is needed toward the development of novel polymyxin formulations in combination with neuroprotective agents to ameliorate this unwanted adverse effect during polymyxins therapy in patients.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Xilong Xiao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Jichang Li
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, P. R. China
| | - Giuseppe D. Ciccotosto
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Roberto Cappai
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shusheng Tang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Elena K. Schneider-Futschik
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Daniel Hoyer
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Tony Velkov
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, P. R. China
| | - Jianzhong Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| |
Collapse
|
17
|
Rigatto MH, Falci DR, Zavascki AP. Clinical Use of Polymyxin B. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1145:197-218. [PMID: 31364080 DOI: 10.1007/978-3-030-16373-0_14] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Polymyxin B is another clinically available polymyxin that has re-emerged in clinical practice to treat infections caused by multi-drug (MDR) or extensively-drug-resistant (XDR) Gram-negative bacteria (GNB). Its chemical structure is very similar to the structure of polymyxin E (colistin). However, since the latter is administered as a prodrug, there are major pharmacokinetic differences between both polymyxins that may potentially determine different clinical and microbiological outcomes. Studies addressing clinical or microbiological outcomes in patients treated with polymyxin B for MDR or XDR GNB are reviewed in this chapter.
Collapse
Affiliation(s)
- Maria Helena Rigatto
- Infectious Diseases Service, Hospital São Lucas da Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Medical School, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego R Falci
- Post-Graduate Program in Health and Human Development, Universidade La Salle, Canoas, Brazil
- Infectious Diseases Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Alexandre P Zavascki
- Infectious Diseases Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
- Department of Internal Medicine, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
18
|
|
19
|
Dai C, Ciccotosto GD, Cappai R, Wang Y, Tang S, Xiao X, Velkov T. Minocycline attenuates colistin-induced neurotoxicity via suppression of apoptosis, mitochondrial dysfunction and oxidative stress. J Antimicrob Chemother 2017; 72:1635-1645. [PMID: 28204513 DOI: 10.1093/jac/dkx037] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/18/2017] [Indexed: 11/13/2022] Open
Abstract
Background Neurotoxicity is an adverse effect patients experience during colistin therapy. The development of effective neuroprotective agents that can be co-administered during polymyxin therapy remains a priority area in antimicrobial chemotherapy. The present study investigates the neuroprotective effect of the synergistic tetracycline antibiotic minocycline against colistin-induced neurotoxicity. Methods The impact of minocycline pretreatment on colistin-induced apoptosis, caspase activation, oxidative stress and mitochondrial dysfunction were investigated using cultured mouse neuroblastoma-2a (N2a) and primary cortical neuronal cells. Results Colistin-induced neurotoxicity in mouse N2a and primary cortical cells gives rise to the generation of reactive oxygen species (ROS) and subsequent cell death via apoptosis. Pretreatment of the neuronal cells with minocycline at 5, 10 and 20 μM for 2 h prior to colistin (200 μM) exposure (24 h), had an neuroprotective effect by significantly decreasing intracellular ROS production and by upregulating the activities of the anti-ROS enzymes superoxide dismutase and catalase. Minocycline pretreatment also protected the cells from colistin-induced mitochondrial dysfunction, caspase activation and subsequent apoptosis. Immunohistochemical imaging studies revealed colistin accumulates within the dendrite projections and cell body of primary cortical neuronal cells. Conclusions To our knowledge, this is first study demonstrating the protective effect of minocycline on colistin-induced neurotoxicity by scavenging of ROS and suppression of apoptosis. Our study highlights that co-administration of minocycline kills two birds with one stone: in addition to its synergistic antimicrobial activity, minocycline could potentially ameliorate unwanted neurotoxicity in patients undergoing polymyxin therapy.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Giuseppe D Ciccotosto
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Roberto Cappai
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Yang Wang
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
20
|
Lu Z, Miao Y, Muhammad I, Tian E, Hu W, Wang J, Wang B, Li R, Li J. Colistin-induced autophagy and apoptosis involves the JNK-Bcl2-Bax signaling pathway and JNK-p53-ROS positive feedback loop in PC-12 cells. Chem Biol Interact 2017; 277:62-73. [DOI: 10.1016/j.cbi.2017.08.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/21/2017] [Accepted: 08/17/2017] [Indexed: 01/02/2023]
|
21
|
Lu Z, Chen C, Wu Z, Miao Y, Muhammad I, Ding L, Tian E, Hu W, Ni H, Li R, Wang B, Li J. A Dual Role of P53 in Regulating Colistin-Induced Autophagy in PC-12 Cells. Front Pharmacol 2017; 8:768. [PMID: 29163157 PMCID: PMC5664992 DOI: 10.3389/fphar.2017.00768] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/11/2017] [Indexed: 12/15/2022] Open
Abstract
This study aimed to investigate the mechanism of p53 in regulating colistin-induced autophagy in PC-12 cells. Importantly, cells were treated with 125 μg/ml colistin for 12 and 24 h after transfection with p53 siRNA or recombinant plasmid. The hallmarks of autophagy and apoptosis were examined by real-time PCR and western blot, fluorescence/immunofluorescence microscopy, and electron microscopy. The results showed that silencing of p53 leads to down-regulation of Atg5 and beclin1 for 12 h while up-regulation at 24 h and up-regulation of p62 noted. The ratio of LC3-II/I and autophagic vacuoles were significantly increased at 24 h, but autophagy flux was blocked. The cleavage of caspase3 and PARP (poly ADP-ribose polymerase) were enhanced, while PC-12-sip53 cells exposed to 3-MA showed down-regulation of apoptosis. By contrast, the expression of autophagy-related genes and protein reduced in p53 overexpressing cells following a time dependent manner. Meanwhile, there was an increase in the expression of activated caspase3 and PARP, condensed and fragmented nuclei were evident. Conclusively, the data supported that silencing of p53 promotes impaired autophagy, which acts as a pro-apoptotic induction factor in PC-12 cells treated with colistin for 24 h, and overexpression of p53 inhibits autophagy and accelerates apoptosis. Hence, it has been suggested that p53 could not act as a neuro-protective target in colistin-induced neurotoxicity.
Collapse
Affiliation(s)
- Ziyin Lu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Department of Animal Production, College of Life Engineering, Shenyang Institute of Technology, Fushun, China
| | - Chunli Chen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhiyong Wu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yusong Miao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ishfaq Muhammad
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Liangjun Ding
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Erjie Tian
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wanjun Hu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Huilin Ni
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Rui Li
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Bo Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jichang Li
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| |
Collapse
|
22
|
Garg SK, Singh O, Juneja D, Tyagi N, Khurana AS, Qamra A, Motlekar S, Barkate H. Resurgence of Polymyxin B for MDR/XDR Gram-Negative Infections: An Overview of Current Evidence. Crit Care Res Pract 2017; 2017:3635609. [PMID: 28761764 PMCID: PMC5518490 DOI: 10.1155/2017/3635609] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/07/2017] [Accepted: 05/29/2017] [Indexed: 01/25/2023] Open
Abstract
Polymyxin B has resurged in recent years as a last resort therapy for Gram-negative multidrug-resistant (MDR) and extremely drug resistant (XDR) infections. Understanding newer evidence on polymyxin B is necessary to guide clinical decision making. Here, we present a literature review of polymyxin B in Gram-negative infections with update on its pharmacology.
Collapse
Affiliation(s)
- Suneel Kumar Garg
- Institute of Critical Care Medicine, Max Super Specialty Hospital, Saket, New Delhi 110017, India
| | - Omender Singh
- Institute of Critical Care Medicine, Max Super Specialty Hospital, Saket, New Delhi 110017, India
| | - Deven Juneja
- Institute of Critical Care Medicine, Max Super Specialty Hospital, Saket, New Delhi 110017, India
| | - Niraj Tyagi
- Department of Critical Care and Emergency Medicine, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi 110060, India
| | | | - Amit Qamra
- Department of Medical Affairs, Wockhardt Ltd., Wockhardt Towers, Mumbai 400051, India
| | - Salman Motlekar
- Department of Medical Affairs, Wockhardt Ltd., Wockhardt Towers, Mumbai 400051, India
| | - Hanmant Barkate
- Department of Medical Affairs, Wockhardt Ltd., Wockhardt Towers, Mumbai 400051, India
| |
Collapse
|
23
|
Esposito S, Canevini MP, Principi N. Complications associated with antibiotic administration: neurological adverse events and interference with antiepileptic drugs. Int J Antimicrob Agents 2017; 50:1-8. [PMID: 28414069 DOI: 10.1016/j.ijantimicag.2017.01.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 01/28/2017] [Indexed: 11/19/2022]
Abstract
Antibiotic use is associated with toxic effects involving the peripheral and central nervous systems and it may interfere with antiepileptic drugs, causing significant variations in their serum levels and activity. Prompt identification of neurological complications during antibiotic therapy is important in order to make appropriate modifications to medication. Characteristics of the drug and the patient, including age and underlying diseases, may favour these complications. The main aim of this study was to review the neurological adverse events that may follow antibiotic administration, the mechanisms that cause them, and the possibility of prevention and treatment. Moreover, the interference of antibiotics with serum levels and the activity of antiepileptic drugs are discussed. The results demonstrate that antibiotic-associated adverse events involving the nervous system are relatively uncommon and are only rarely severe and irreversible, although neurotoxicity has been reported for several antibiotics. Moreover, for patients receiving antiepileptic drugs, monitoring of drug serum levels to avoid the risk of toxicity or inadequate therapy is mandatory during antibiotic treatment. Areas for future research include the effects of combined antibiotic therapies as well as multiple antiepileptic drugs in study populations with an adequate sample size, including neonates and infants, patients with pharmacoresistant epilepsy and elderly patients.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Università degli Studi di Perugia, Perugia, Italy.
| | - Maria Paola Canevini
- Child Neurology Unit-Epilepsy Center, San Paolo Hospital, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Nicola Principi
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
24
|
Dai C, Ciccotosto GD, Cappai R, Tang S, Li D, Xie S, Xiao X, Velkov T. Curcumin Attenuates Colistin-Induced Neurotoxicity in N2a Cells via Anti-inflammatory Activity, Suppression of Oxidative Stress, and Apoptosis. Mol Neurobiol 2016; 55:421-434. [PMID: 27957686 DOI: 10.1007/s12035-016-0276-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/30/2016] [Indexed: 01/06/2023]
Abstract
Neurotoxicity is an unwanted side-effect seen in patients receiving therapy with the "last-line" polymyxin antibiotics. This is the first study to show that colistin-induced neurotoxicity in neuroblastoma-2a (N2a) cells gives rise to an inflammatory response involving the IL-1β/p-IκB-α/NF-κB pathway. Pretreatment with curcumin at 5, 10, and 20 μM for 2 h prior to colistin (200 μM) exposure for 24 h, produced an anti-inflammatory effect by significantly down-regulating the expression of the pro-inflammatory mediators cyclooxygenase-2 (COX-2), phosphorylation of the inhibitor of nuclear factor-kappa B (NF-κB) (p-IκB)-α, and concomitantly NF-κB levels. Moreover, curcumin significantly decreased intracellular reactive oxygen species (ROS) production and increased the activities of the anti-ROS enzymes superoxide dismutase, catalase, and the intracellular levels of glutathione. Curcumin pretreatment also protected the cells from colistin-induced mitochondrial dysfunction, caspase activation, and subsequent apoptosis. Overall, our findings demonstrate for the first time, a potential role for curcumin for treating polymyxin-induced neurotoxicity through the modulation of NF-κB signaling and its potent anti-oxidative and anti-apoptotic effects.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Giuseppe D Ciccotosto
- Department of Pathology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Roberto Cappai
- Department of Pathology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Daowen Li
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Sanlei Xie
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China.
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
25
|
Dai C, Tang S, Velkov T, Xiao X. Colistin-Induced Apoptosis of Neuroblastoma-2a Cells Involves the Generation of Reactive Oxygen Species, Mitochondrial Dysfunction, and Autophagy. Mol Neurobiol 2015; 53:4685-700. [PMID: 26316077 DOI: 10.1007/s12035-015-9396-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022]
Abstract
Neurotoxicity remains a poorly characterized adverse effect associated with colistin therapy. The aim of the present study was to investigate the mechanism of colistin-induced neurotoxicity using the mouse neuroblastoma2a (N2a) cell line. Colistin treatment (0-200 μM) of N2a neuronal cells induced apoptotic cell death in a dose-dependent manner. Colistin-induced neurotoxicity was associated with a significant increase of reactive oxygen species (ROS) levels, with a concomitant decrease in the activities of superoxide dismutase (SOD), catalase (CAT), and the glutathione (GSH) levels. Mitochondrial dysfunction was evident from the dissipation of membrane potential and the increase of Bax/Bcl-2, followed by the release of cytochrome c (CytC). Caspase-3/7, -8, and -9 activations were also detected. Colistin-induced neurotoxicity significantly increased the gene expression of p53 (1.6-fold), Bax (3.3-fold), and caspase-8 (2.2-fold) (all p < 0.01). The formation of autophagic vacuoles was evident with the significant increases (all p < 0.05 or 0.01) of both of Beclin 1 and LC3B following colistin treatment (50-200 μM). Furthermore, inhibition of autophagy by pretreatment with chloroquine diphosphate (CQ) enhanced colistin-induced apoptosis via caspase activation, which could be attenuated by co-treatment with the pan-caspase inhibitor Z-VAD-FMK. In summary, our study reveals that colistin-induced neuronal cell death involves ROS-mediated oxidative stress and mitochondrial dysfunction, followed by caspase-dependent apoptosis and autophagy. A knowledge base of the neuronal signaling pathways involved in colistin-induced neurotoxicity will greatly facilitate the discovery of neuroprotective agents for use in combination with colistin to prevent this undesirable side effect.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia.
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China.
| |
Collapse
|
26
|
Synergistic effect of membrane-active peptides polymyxin B and gramicidin S on multidrug-resistant strains and biofilms of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2015; 59:5288-96. [PMID: 26077259 DOI: 10.1128/aac.00682-15] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/09/2015] [Indexed: 12/13/2022] Open
Abstract
Multidrug-resistant Pseudomonas aeruginosa is a major cause of severe hospital-acquired infections. Currently, polymyxin B (PMB) is a last-resort antibiotic for the treatment of infections caused by Gram-negative bacteria, despite its undesirable side effects. The delivery of drug combinations has been shown to reduce the required therapeutic doses of antibacterial agents and thereby their toxicity if a synergistic effect is present. In this study, we investigated the synergy between two cyclic antimicrobial peptides, PMB and gramicidin S (GS), against different P. aeruginosa isolates, using a quantitative checkerboard assay with resazurin as a growth indicator. Among the 28 strains that we studied, 20 strains showed a distinct synergistic effect, represented by a fractional inhibitory concentration index (FICI) of ≤0.5. Remarkably, several clinical P. aeruginosa isolates that grew as small-colony variants revealed a nonsynergistic effect, as indicated by FICIs between >0.5 and ≤0.70. In addition to inhibiting the growth of planktonic bacteria, the peptide combinations significantly decreased static biofilm growth compared with treatment with the individual peptides. There was also a faster and more prolonged effect when the combination of PMB and GS was used compared with single-peptide treatments on the metabolic activity of pregrown biofilms. The results of the present study define a synergistic interaction between two cyclic membrane-active peptides toward 17 multidrug-resistant P. aeruginosa and biofilms of P. aeruginosa strain PAO1. Thus, the application of PMB and GS in combination is a promising option for a topical medication and in the prevention of acute and chronic infections caused by multidrug-resistant or biofilm-forming P. aeruginosa.
Collapse
|
27
|
Cheng X, Gao D, Chen B, Mao X. Endotoxin-Binding Peptides Derived from Casein Glycomacropeptide Inhibit Lipopolysaccharide-Stimulated Inflammatory Responses via Blockade of NF-κB activation in macrophages. Nutrients 2015; 7:3119-37. [PMID: 25923657 PMCID: PMC4446742 DOI: 10.3390/nu7053119] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/25/2015] [Accepted: 04/02/2015] [Indexed: 12/13/2022] Open
Abstract
Systemic low-grade inflammation and increased circulating lipopolysaccharide (LPS) contribute to metabolic dysfunction. The inhibitory effects and underlying molecular mechanisms of casein glycomacropeptide (GMP) hydrolysate on the inflammatory response of LPS-stimulated macrophages were investigated. Results showed that the inhibitory effect of GMP hydrolysates obtained with papain on nitric oxide (NO) production were obviously higher than that of GMP hydrolysates obtained with pepsin, alcalase and trypsin (p < 0.05), and the hydrolysate obtained with papain for 1 h hydrolysis (GHP) exhibited the highest inhibitory effect. Compared with native GMP, GHP markedly inhibited LPS-induced NO production in a dose-dependent manner with decreased mRNA level of inducible nitric oxide synthase (iNOS). GHP blocked toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88)/nuclear factor-κB (NF-κB) signaling pathway activation, accompanied by downregulation of LPS-triggered significant upregulation of tumor necrosis factor (TNF)-α and interleukin (IL)-1β gene expression. Furthermore, GHP could neutralize LPS not only by direct binding to LPS, but also by inhibiting the engagement of LPS with the TLR4/MD2 complex, making it a potential LPS inhibitor. In conclusion, these findings suggest that GHP negatively regulates TLR4-mediated inflammatory response in LPS-stimulated RAW264.7 cells, and therefore may hold potential to ameliorate inflammation-related issues.
Collapse
Affiliation(s)
- Xue Cheng
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agriculture University, Beijing 100083, China.
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Training Center, Beijing 100094, China.
| | - Dongxiao Gao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agriculture University, Beijing 100083, China.
| | - Bin Chen
- Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agriculture University, Haerbin 150030, China.
| | - Xueying Mao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agriculture University, Beijing 100083, China.
| |
Collapse
|
28
|
Polymyxin B infusion leading to cardiac arrest: a case report and literature review. Infection 2014; 43:121-4. [DOI: 10.1007/s15010-014-0704-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
|
29
|
Rapp RP, Urban C. Klebsiella pneumoniae carbapenemases in Enterobacteriaceae: history, evolution, and microbiology concerns. Pharmacotherapy 2012; 32:399-407. [PMID: 22488420 DOI: 10.1002/j.1875-9114.2012.01035.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Since the discovery of penicillin 80 years ago, gram-negative bacteria have become proficient at evading the lethal activity of β-lactam antibiotics, principally through the production of β-lactamases. The rapid emergence of penicillinases in both gram-positive and gram-negative bacteria led to the development of cephalosporin β-lactam antibiotics, but production of plasmid-mediated extended-spectrum cephalosporinases (or extended-spectrum β-lactamases) and AmpC enzymes resulted in resistance to this drug class. Because carbapenems were the only β-lactam agents active against such extended-spectrum β-lactamase-producing strains, appropriate and inappropriate use soon resulted in Enterobacteriaceae resistance. As a result, two distinct types of carbapenemases-the metallo-β-lactamases and Klebsiella pneumoniae carbapenemases (KPCs)-were soon identified. The KPCs comprise 10 variants that differ from one another by one to three amino acid substitutions (KPC-2 to KPC-11). The KPC-producing Enterobacteriaceae are not only multidrug resistant but are also difficult to detect routinely in the clinical microbiology laboratory. Tigecycline, polymyxins (colistin and polymyxin B), and aminoglycosides are possible candidate therapies for infections caused by KPC-producing organisms, although well-conducted clinical trials are required to fully define their roles in patient management. The shortage of new antimicrobial agents on the immediate horizon suggests that enhanced adherence with infection prevention procedures and antimicrobial stewardship programs are needed to curb patient-to-patient transmission and to reduce the selection of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Robert P Rapp
- College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA.
| | | |
Collapse
|
30
|
Grill MF, Maganti RK. Neurotoxic effects associated with antibiotic use: management considerations. Br J Clin Pharmacol 2011; 72:381-93. [PMID: 21501212 DOI: 10.1111/j.1365-2125.2011.03991.x] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The clinical manifestations of antibiotic-induced neurotoxic effects, the underlying mechanisms and management strategies have been reviewed. PubMed and OVID searches (January 1960-June 2010) were conducted using search terms such as antibiotics, side effects, neurotoxicity and encephalopathy which yielded approximately 300 articles. All relevant case reports, case series, letters and retrospective reviews describing neurotoxic effects and those discussing mechanisms of neurotoxicity were included. Antibiotic-induced neurotoxic side effects can have a myriad of neurologic presentations. Patients with prior central nervous system (CNS) disease, renal insufficiency and advanced age may be particularly vulnerable. Treatment consists of discontinuation of the offending agent, use of antiepileptic drugs in the case of seizures or status epilepticus and haemodialysis in certain cases. The risk of CNS toxicity may be reduced via dosage adjustments in high risk populations. Awareness of the potential neurotoxic clinical manifestations of various antibiotics and high degree of vigilance in critically ill patients is essential in identifying a potentially serious, though reversible complications of antibiotic therapy particularly with the advent of newer antimicrobial agents.
Collapse
Affiliation(s)
- Marie F Grill
- University of California San Francisco, San Francisco General Hospital, 1001 Potrero Avenue, 4M62, San Francisco, CA 94110, USA
| | | |
Collapse
|
31
|
Song C, Gao NY, Gao HW. Transmembrane distribution of kanamycin and chloramphenicol: insights into the cytotoxicity of antibacterial drugs. MOLECULAR BIOSYSTEMS 2010; 6:1901-10. [DOI: 10.1039/b921810f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|