1
|
Ramalingam PS, Elangovan S, Mekala JR, Arumugam S. Liver X Receptors (LXRs) in cancer-an Eagle's view on molecular insights and therapeutic opportunities. Front Cell Dev Biol 2024; 12:1386102. [PMID: 38550382 PMCID: PMC10972936 DOI: 10.3389/fcell.2024.1386102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 01/03/2025] Open
Abstract
Cancer has become a serious health burden that results in high incidence and mortality rates every year, mainly due to various molecular alterations inside the cell. Liver X receptors (LXRs) dysregulation is one among them that plays a vital role in cholesterol metabolism, lipid metabolism and inflammation and also plays a crucial role in various diseases such as obesity, metabolic dysfunction-associated fatty liver disease (MAFLD), cardiovascular diseases, Type 2 diabetes, osteoporosis, and cancer. Studies report that the activation of LXRs inhibits cancer growth by inhibiting cellular proliferation, inducing apoptosis and autophagy, regulating cholesterol metabolism, various signalling pathways such as Wnt, and PI3K/AKT, modulating the expression levels of cell-cycle regulators, and promoting antitumor immunity inside the tumor microenvironment. In this review, we have discussed the role, structure, and functions of LXRs and also summarized their ligands along with their mechanism of action. In addition, the role of LXRs in various cancers, tumor immunity and tumor microenvironment (TME) along with the importance of precision medicine in LXR-targeted therapies has been discussed to emphasize the LXRs as potent targets for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
| | - Sujatha Elangovan
- Protein Engineering Lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Janaki Ramaiah Mekala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Guntur, Andhra Pradesh, India
| | - Sivakumar Arumugam
- Protein Engineering Lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
2
|
Avena P, Casaburi I, Zavaglia L, Nocito MC, La Padula D, Rago V, Dong J, Thomas P, Mineo C, Sirianni R, Shaul PW. 27-Hydroxycholesterol Binds GPER and Induces Progression of Estrogen Receptor-Negative Breast Cancer. Cancers (Basel) 2022; 14:1521. [PMID: 35326671 PMCID: PMC8946696 DOI: 10.3390/cancers14061521] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Cholesterol affects the proliferation of breast cancer (BC) and in particular of estrogen receptor-negative (ER-) BC. Cholesterol is converted to 27-hydroxycholesterol (27HC), which promotes the growth of ER+ BC. Potentially, 27HC can be involved in cholesterol-dependent ER- BC proliferation. Stable MDA-MB-231 silenced clones for CYP7B1 (27HC metabolizing enzyme) show an increased basal proliferation rate, which is not observed in the presence of lipoprotein-deprived serum. Furthermore, the treatment of SKBR3, MDA-MB-231 and MDA-MB-468 with 27HC increased cell proliferation that was prevented by G15, a selective G Protein-Coupled Estrogen Receptor (GPER) inhibitor, suggested this receptor to be a potential 27HC target. Binding experiments demonstrate that 27HC is a new ligand for GPER. We show that ERK1/2 and NFκB are part of the 27HC/GPER pathway. The stable silencing of GPER prevents NFκB activation and reduces basal and 27HC-dependent tumor growth. Additionally, conditioned medium from ER- BC cells treated with 27HC promotes tube formation, which does not occur with CM from GPER silenced cells. Collectively, these data demonstrate that cholesterol conversion into 27HC promotes ER- BC growth and progression, and the expression of GPER is required for its effects.
Collapse
Affiliation(s)
- Paola Avena
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (P.A.); (I.C.); (L.Z.); (M.C.N.); (D.L.P.); (V.R.)
| | - Ivan Casaburi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (P.A.); (I.C.); (L.Z.); (M.C.N.); (D.L.P.); (V.R.)
| | - Lucia Zavaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (P.A.); (I.C.); (L.Z.); (M.C.N.); (D.L.P.); (V.R.)
| | - Marta C. Nocito
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (P.A.); (I.C.); (L.Z.); (M.C.N.); (D.L.P.); (V.R.)
| | - Davide La Padula
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (P.A.); (I.C.); (L.Z.); (M.C.N.); (D.L.P.); (V.R.)
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (P.A.); (I.C.); (L.Z.); (M.C.N.); (D.L.P.); (V.R.)
| | - Jing Dong
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA; (J.D.); (P.T.)
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA; (J.D.); (P.T.)
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Rosa Sirianni
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (P.A.); (I.C.); (L.Z.); (M.C.N.); (D.L.P.); (V.R.)
| | - Philip W. Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
3
|
Cho-Clark MJ, Sukumar G, Vidal NM, Raiciulescu S, Oyola MG, Olsen C, Mariño-Ramírez L, Dalgard CL, Wu TJ. Comparative transcriptome analysis between patient and endometrial cancer cell lines to determine common signaling pathways and markers linked to cancer progression. Oncotarget 2021; 12:2500-2513. [PMID: 34966482 PMCID: PMC8711572 DOI: 10.18632/oncotarget.28161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/10/2021] [Indexed: 01/08/2023] Open
Abstract
The rising incidence and mortality of endometrial cancer (EC) in the United States calls for an improved understanding of the disease's progression. Current methodologies for diagnosis and treatment rely on the use of cell lines as models for tumor biology. However, due to inherent heterogeneity and differential growing environments between cell lines and tumors, these comparative studies have found little parallels in molecular signatures. As a consequence, the development and discovery of preclinical models and reliable drug targets are delayed. In this study, we established transcriptome parallels between cell lines and tumors from The Cancer Genome Atlas (TCGA) with the use of optimized normalization methods. We identified genes and signaling pathways associated with regulating the transformation and progression of EC. Specifically, the LXR/RXR activation, neuroprotective role for THOP1 in Alzheimer's disease, and glutamate receptor signaling pathways were observed to be mostly downregulated in advanced cancer stage. While some of these highlighted markers and signaling pathways are commonly found in the central nervous system (CNS), our results suggest a novel function of these genes in the periphery. Finally, our study underscores the value of implementing appropriate normalization methods in comparative studies to improve the identification of accurate and reliable markers.
Collapse
Affiliation(s)
- Madelaine J. Cho-Clark
- Department of Gynecologic Surgery & Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Gauthaman Sukumar
- Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Newton Medeiros Vidal
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Sorana Raiciulescu
- Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Mario G. Oyola
- Department of Gynecologic Surgery & Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Cara Olsen
- Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Leonardo Mariño-Ramírez
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD 20814, USA
| | - Clifton L. Dalgard
- Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - T. John Wu
- Department of Gynecologic Surgery & Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
4
|
Siddharth S, Parida S, Muniraj N, Hercules S, Lim D, Nagalingam A, Wang C, Gyorffy B, Daniel JM, Sharma D. Concomitant activation of GLI1 and Notch1 contributes to racial disparity of human triple negative breast cancer progression. eLife 2021; 10:70729. [PMID: 34889737 PMCID: PMC8664295 DOI: 10.7554/elife.70729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/19/2021] [Indexed: 01/16/2023] Open
Abstract
Mortality from triple negative breast cancer (TNBC) is significantly higher in African American (AA) women compared to White American (WA) women emphasizing ethnicity as a major risk factor; however, the molecular determinants that drive aggressive progression of AA-TNBC remain elusive. Here, we demonstrate for the first time that AA-TNBC cells are inherently aggressive, exhibiting elevated growth, migration, and cancer stem-like phenotype compared to WA-TNBC cells. Meta-analysis of RNA-sequencing data of multiple AA- and WA-TNBC cell lines shows enrichment of GLI1 and Notch1 pathways in AA-TNBC cells. Enrichment of GLI1 and Notch1 pathway genes was observed in AA-TNBC. In line with this observation, analysis of TCGA dataset reveals a positive correlation between GLI1 and Notch1 in AA-TNBC and a negative correlation in WA-TNBC. Increased nuclear localization and interaction between GLI1 and Notch1 is observed in AA-TNBC cells. Of importance, inhibition of GLI1 and Notch1 synergistically improves the efficacy of chemotherapy in AA-TNBC cells. Combined treatment of AA-TNBC-derived tumors with GANT61, DAPT, and doxorubicin/carboplatin results in significant tumor regression, and tumor-dissociated cells show mitigated migration, invasion, mammosphere formation, and CD44+/CD24- population. Indeed, secondary tumors derived from triple-therapy-treated AA-TNBC tumors show diminished stem-like phenotype. Finally, we show that TNBC tumors from AA women express significantly higher level of GLI1 and Notch1 expression in comparison to TNBC tumors from WA women. This work sheds light on the racial disparity in TNBC, implicates the GLI1 and Notch1 axis as its functional mediators, and proposes a triple-combination therapy that can prove beneficial for AA-TNBC.
Collapse
Affiliation(s)
- Sumit Siddharth
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| | - Sheetal Parida
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| | - Nethaji Muniraj
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| | - Shawn Hercules
- Department of Biology, MacMaster University, Hamilton, Canada
| | - David Lim
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| | - Arumugam Nagalingam
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| | - Chenguang Wang
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| | - Balazs Gyorffy
- MTA TTK Momentum Cancer Biomarker Research Group, Budapest, Hungary.,Semmelweis University, Department of Bioinformatics and 2nd Dept. of Pediatrics, Budapest, Hungary
| | - Juliet M Daniel
- Department of Biology, MacMaster University, Hamilton, Canada
| | - Dipali Sharma
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| |
Collapse
|
5
|
Wu J, Mamidi TKK, Zhang L, Hicks C. Unraveling the Genomic-Epigenomic Interaction Landscape in Triple Negative and Non-Triple Negative Breast Cancer. Cancers (Basel) 2020; 12:cancers12061559. [PMID: 32545594 PMCID: PMC7352267 DOI: 10.3390/cancers12061559] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 01/01/2023] Open
Abstract
Background: The recent surge of next generation sequencing of breast cancer genomes has enabled development of comprehensive catalogues of somatic mutations and expanded the molecular classification of subtypes of breast cancer. However, somatic mutations and gene expression data have not been leveraged and integrated with epigenomic data to unravel the genomic-epigenomic interaction landscape of triple negative breast cancer (TNBC) and non-triple negative breast cancer (non-TNBC). Methods: We performed integrative data analysis combining somatic mutation, epigenomic and gene expression data from The Cancer Genome Atlas (TCGA) to unravel the possible oncogenic interactions between genomic and epigenomic variation in TNBC and non-TNBC. We hypothesized that within breast cancers, there are differences in somatic mutation, DNA methylation and gene expression signatures between TNBC and non-TNBC. We further hypothesized that genomic and epigenomic alterations affect gene regulatory networks and signaling pathways driving the two types of breast cancer. Results: The investigation revealed somatic mutated, epigenomic and gene expression signatures unique to TNBC and non-TNBC and signatures distinguishing the two types of breast cancer. In addition, the investigation revealed molecular networks and signaling pathways enriched for somatic mutations and epigenomic changes unique to each type of breast cancer. The most significant pathways for TNBC were: retinal biosynthesis, BAG2, LXR/RXR, EIF2 and P2Y purigenic receptor signaling pathways. The most significant pathways for non-TNBC were: UVB-induced MAPK, PCP, Apelin endothelial, Endoplasmatic reticulum stress and mechanisms of viral exit from host signaling Pathways. Conclusion: The investigation revealed integrated genomic, epigenomic and gene expression signatures and signing pathways unique to TNBC and non-TNBC, and a gene signature distinguishing the two types of breast cancer. The study demonstrates that integrative analysis of multi-omics data is a powerful approach for unravelling the genomic-epigenomic interaction landscape in TNBC and non-TNBC.
Collapse
Affiliation(s)
- Jiande Wu
- Health Sciences Center, Department of Genetic, Louisiana State University School of Medicine, 533 Bolivar Street, New Orleans, LA 70112, USA;
| | - Tarun Karthik Kumar Mamidi
- Center for Computational Genomics and Data Science, Departments of Pediatrics and Pathology, University of Alabama–Birmingham School of Medicine, Birmingham, AL 35233, USA;
| | - Lu Zhang
- Department of Public Health Sciences, Clemson University, 513 Edwards Hall, Clemson, SC 29634, USA;
| | - Chindo Hicks
- Health Sciences Center, Department of Genetic, Louisiana State University School of Medicine, 533 Bolivar Street, New Orleans, LA 70112, USA;
- Correspondence: ; Tel.: +1-504-568-2657
| |
Collapse
|
6
|
Cholesterol, Oxysterols and LXRs in Breast Cancer Pathophysiology. Int J Mol Sci 2020; 21:ijms21041356. [PMID: 32079340 PMCID: PMC7072989 DOI: 10.3390/ijms21041356] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 12/29/2022] Open
Abstract
Breast cancer is the most frequent cancer among women. In 2018, it is estimated that 627,000 women died from breast cancer. This is approximately 15% of all cancer deaths among women (WHO 2018). Breast cancer is a multifactorial chronic disease. While important progress has been made to treat patients, many questions regarding aspects of this disease relating to carcinogenesis are still open. During carcinogenesis, cells exhibit cholesterol homeostasis deregulation. This results in an accumulation of intracellular cholesterol, which is required to sustain their high growth rate. Cholesterol efflux and influx are two metabolic pathways that are necessary to prevent cholesterol accumulation in the cells. Liver X receptors (LXRs) are nuclear receptors that, upon activation, induce the expression of ABC transporters, responsible for promoting cholesterol efflux, and the expression of IDOL (inducible degrader of low-density lipoprotein receptor), in charge of reducing cholesterol influx. Oxysterols, oxygenated derivatives of cholesterol formed through different pathways, have been discovered as LXR-specific ligands. Some oxysterols are involved in tumor formation while others are considered anti-tumor agents. In the present review, we discuss the involvement of cholesterol, oxysterols and LXRs in breast cancer pathophysiology, with an emphasis on the biological effects of LXR ligands.
Collapse
|
7
|
Bauer D, Mazzio E, Hilliard A, Oriaku ET, Soliman KFA. Effect of apigenin on whole transcriptome profile of TNFα-activated MDA-MB-468 triple negative breast cancer cells. Oncol Lett 2020; 19:2123-2132. [PMID: 32194710 PMCID: PMC7038999 DOI: 10.3892/ol.2020.11327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
The lack of hormone receptors in triple negative breast cancer (TNBC) is associated with the inefficacy of anti-estrogen chemotherapies, leaving fewer options for patient treatment and higher mortality rates. Additionally, as with numerous types of inflammatory breast cancer, infiltration of tumor associated macrophages and other leukocyte sub-populations within the tumor inevitably lead to aggressive, chemo-resistant, metastatic and invasive types of cancer which escape immune surveillance. These processes are orchestrated by the release of potent cytokines, including TNFα, IL-6 and CCL2 from the stroma, tumor and immune cells within the tumor microenvironment. The present study evaluated apigenin modulating effects on the pro-inflammatory activating action of TNFα in TNBC MDA-MB-468 cells, derived from an African American woman. Initially, cell viability was determined to establish an optimal sub-lethal dose of TNFα and apigenin in MDA-MB-468 cells. Subsequently, various treatments effects were evaluated using whole transcriptomic analysis of mRNA and long intergenic non-coding RNA with Affymetrix HuGene-2.1-st human microarrays. Gene level differential expression analysis was conducted on 48,226 genes where TNFα caused significant upregulation of 53 transcripts and downregulation of 11 transcripts. The largest upward differential shift was for CCL2 [+61.86 fold change (FC); false discovery rate (FDR), P<0.0001]; which was down regulated by apigenin (to +10.71 FC vs. Control; FDR P-value <0.001), equivalent to an 83% reduction. Several TNFα deferentially upregulated transcripts were reduced by apigenin, including CXCL10, C3, PGLYRP4, IL22RA2, KMO, IL7R, ROS1, CFB, IKBKe, SLITRK6 (a checkpoint target) and MMP13. Confirmation of CCL2 experimentally induced transcript alterations was corroborated at the protein level by ELISA assays. The high level of CCL2 transcript in the cell line was comparable to that in our previous studies in MDA-MB-231 cells. The differential effects of TNFα were corroborated by ELISA, where the data revealed a >10-fold higher releasing rate of CCL2 in MDA-MB-468 cells compared with in MDA-MB-231 cells, both of which were attenuated by apigenin. The data obtained in the present study demonstrated a high level of CCL2 in MDA-MB-468 cells and a possible therapeutic role for apigenin in downregulating TNFα-mediated processes in these TNBC cells.
Collapse
Affiliation(s)
- David Bauer
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Elizabeth Mazzio
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Aaron Hilliard
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Ebenezer T Oriaku
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F A Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
8
|
Al-wajeeh AS, Salhimi SM, Al-Mansoub MA, Khalid IA, Harvey TM, Latiff A, Ismail MN. Comparative proteomic analysis of different stages of breast cancer tissues using ultra high performance liquid chromatography tandem mass spectrometer. PLoS One 2020; 15:e0227404. [PMID: 31945087 PMCID: PMC6964830 DOI: 10.1371/journal.pone.0227404] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/18/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Breast cancer is the fifth most prevalent cause of death among women worldwide. It is also one of the most common types of cancer among Malaysian women. This study aimed to characterize and differentiate the proteomics profiles of different stages of breast cancer and its matched adjacent normal tissues in Malaysian breast cancer patients. Also, this study aimed to construct a pertinent protein pathway involved in each stage of cancer. METHODS In total, 80 samples of tumor and matched adjacent normal tissues were collected from breast cancer patients at Seberang Jaya Hospital (SJH) and Kepala Batas Hospital (KBH), both in Penang, Malaysia. The protein expression profiles of breast cancer and normal tissues were mapped by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The Gel-Eluted Liquid Fractionation Entrapment Electrophoresis (GELFREE) Technology System was used for the separation and fractionation of extracted proteins, which also were analyzed to maximize protein detection. The protein fractions were then analyzed by tandem mass spectrometry (LC-MS/MS) analysis using LC/MS LTQ-Orbitrap Fusion and Elite. This study identified the proteins contained within the tissue samples using de novo sequencing and database matching via PEAKS software. We performed two different pathway analyses, DAVID and STRING, in the sets of proteins from stage 2 and stage 3 breast cancer samples. The lists of molecules were generated by the REACTOME-FI plugin, part of the CYTOSCAPE tool, and linker nodes were added in order to generate a connected network. Then, pathway enrichment was obtained, and a graphical model was created to depict the participation of the input proteins as well as the linker nodes. RESULTS This study identified 12 proteins that were detected in stage 2 tumor tissues, and 17 proteins that were detected in stage 3 tumor tissues, related to their normal counterparts. It also identified some proteins that were present in stage 2 but not stage 3 and vice versa. Based on these results, this study clarified unique proteins pathways involved in carcinogenesis within stage 2 and stage 3 breast cancers. CONCLUSIONS This study provided some useful insights about the proteins associated with breast cancer carcinogenesis and could establish an important foundation for future cancer-related discoveries using differential proteomics profiling. Beyond protein identification, this study considered the interaction, function, network, signaling pathway, and protein pathway involved in each profile. These results suggest that knowledge of protein expression, especially in stage 2 and stage 3 breast cancer, can provide important clues that may enable the discovery of novel biomarkers in carcinogenesis.
Collapse
Affiliation(s)
- Abdullah Saleh Al-wajeeh
- Anti-Doping Lab Qatar, Doha, Qatar
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, USM, Penang, Malaysia
| | | | | | | | | | | | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, USM, Penang, Malaysia
| |
Collapse
|
9
|
Carpenter KJ, Valfort AC, Steinauer N, Chatterjee A, Abuirqeba S, Majidi S, Sengupta M, Di Paolo RJ, Shornick LP, Zhang J, Flaveny CA. LXR-inverse agonism stimulates immune-mediated tumor destruction by enhancing CD8 T-cell activity in triple negative breast cancer. Sci Rep 2019; 9:19530. [PMID: 31863071 PMCID: PMC6925117 DOI: 10.1038/s41598-019-56038-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/05/2019] [Indexed: 01/21/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype that is untreatable with hormonal or HER2-targeted therapies and is also typically unresponsive to checkpoint-blockade immunotherapy. Within the tumor microenvironment dysregulated immune cell metabolism has emerged as a key mechanism of tumor immune-evasion. We have discovered that the Liver-X-Receptors (LXRα and LXRβ), nuclear receptors known to regulate lipid metabolism and tumor-immune interaction, are highly activated in TNBC tumor associated myeloid cells. We therefore theorized that inhibiting LXR would induce immune-mediated TNBC-tumor clearance. Here we show that pharmacological inhibition of LXR activity induces tumor destruction primarily through stimulation of CD8+ T-cell cytotoxic activity and mitochondrial metabolism. Our results imply that LXR inverse agonists may be a promising new class of TNBC immunotherapies.
Collapse
Affiliation(s)
- Katherine J Carpenter
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Aurore-Cecile Valfort
- The Center for Clinical Pharmacology, Saint Louis College of Pharmacy, Saint Louis, MO, 63110, USA
| | - Nick Steinauer
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Arindam Chatterjee
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Suomia Abuirqeba
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Shabnam Majidi
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Monideepa Sengupta
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Richard J Di Paolo
- The Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.,The Alvin J. Siteman Cancer Center at Barnes-Jewish and Washington University School of Medicine in Saint Louis, Saint Louis, MO, 63110, USA
| | - Laurie P Shornick
- The Department of Biology, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Jinsong Zhang
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.,The Alvin J. Siteman Cancer Center at Barnes-Jewish and Washington University School of Medicine in Saint Louis, Saint Louis, MO, 63110, USA
| | - Colin A Flaveny
- The Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA. .,The Alvin J. Siteman Cancer Center at Barnes-Jewish and Washington University School of Medicine in Saint Louis, Saint Louis, MO, 63110, USA.
| |
Collapse
|