1
|
Bhattacharya E, Shaw S, Nayak R, Bose S. Advances in targeted therapy for inflammatory breast cancer: nanomaterials, conventional treatments, and clinical applications. NANOTECHNOLOGY 2025; 36:222002. [PMID: 40294602 DOI: 10.1088/1361-6528/add165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 04/28/2025] [Indexed: 04/30/2025]
Abstract
Inflammatory breast cancer (IBC) presents a formidable challenge due to its rapid progression and unique clinical characteristics within the various manifestations of breast cancer. Despite being rare, its aggressive nature demands innovative approaches beyond conventional treatments. Nanomedicine offers exciting possibilities for improving all types of breast cancer therapeutics including IBC. In this review, we critically assess the current treatment landscape for IBC, highlighting the limitations of traditional methods and addressing the pressing need for new therapeutic strategies. Although many nanomaterials have been explored for breast cancer therapeutics, either alone or in combination with other therapies, only a limited number of nanotherapeutics have been extensively studied for IBC treatment. This review further explores how advancements in nanotechnology, such as nanoparticle- mediated photothermal therapy, Photodynamic therapy, and nanomedicinal targeted therapies can offer novel avenues for addressing the unique biological, technological, and regulatory challenges posed by IBC. IBC-related various nanomedicines based combinatorial therapies are highlighted in this review. It also provides a forward-looking perspective on key research directions and clinical applications.
Collapse
Affiliation(s)
- Eshana Bhattacharya
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Siuli Shaw
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Ranu Nayak
- Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Sudeep Bose
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
2
|
Rakoczy K, Kaczor J, Sołtyk A, Szymańska N, Stecko J, Drąg-Zalesińska M, Kulbacka J. The Immune Response of Cancer Cells in Breast and Gynecologic Neoplasms. Int J Mol Sci 2024; 25:6206. [PMID: 38892394 PMCID: PMC11172873 DOI: 10.3390/ijms25116206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer diseases constitute a major health problem which leads to the death of millions of people annually. They are unique among other diseases because cancer cells can perfectly adapt to the environment that they create themselves. This environment is usually highly hostile and for normal cells it would be hugely difficult to survive, however neoplastic cells not only can survive but also manage to proliferate. One of the reasons is that they can alter immunological pathways which allow them to be flexible and change their phenotype to the one needed in specific conditions. The aim of this paper is to describe some of these immunological pathways that play significant roles in gynecologic neoplasms as well as review recent research in this field. It is of high importance to possess extensive knowledge about these processes, as greater understanding leads to creating more specialized therapies which may prove highly effective in the future.
Collapse
Affiliation(s)
- Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.)
| | - Justyna Kaczor
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.)
| | - Adam Sołtyk
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.)
| | - Natalia Szymańska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.)
| | - Jakub Stecko
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.)
| | - Małgorzata Drąg-Zalesińska
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubińskiego 6a, 50-368 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine Santariškių g. 5, LT-08406 Vilnius, Lithuania
| |
Collapse
|
3
|
Zhao H, Wang L, Fang C, Li C, Zhang L. Factors influencing the diagnostic and prognostic values of circulating tumor cells in breast cancer: a meta-analysis of 8,935 patients. Front Oncol 2023; 13:1272788. [PMID: 38090481 PMCID: PMC10711619 DOI: 10.3389/fonc.2023.1272788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/03/2023] [Indexed: 06/29/2024] Open
Abstract
Background Circulating tumor cells (CTCs) could serve as a predictive biomarker in breast cancer (BC). Due to its high heterogeneity, the diagnostic and prognostic values of CTC are challenging. Methods We searched published studies from the databases of PubMed, Cochrane Library, Embase, and MEDLINE. The detection capability and hazard ratios (HRs) of CTCs were extracted as the clinical diagnosis and prognosis evaluation. Subgroup analyses were divided according to the detection methods, continents, treatment periods, therapeutic plans, and cancer stages. Results In this study, 35 publications had been retrieved with 8,935 patients enrolled. The diagnostic efficacy of CTC detection has 74% sensitivity and 98% specificity. The positive CTC detection (CTC+ ) would predict worse OS and PFS/DFS in both mid-therapy and post-therapy (HROS, 3.09; 95% CI, 2.17–4.39; HRPFS/DFS, 2.06; 95% CI, 1.72–2.47). Moreover, CTC+ indicated poor survival irrespective of the treatment phases and sampling times (HROS, 2.43; 95% CI, 1.85–3.19; HRPFS/DFS, 1.82; 95% CI, 1.66–1.99). The CTC+ was associated with poor survival regardless of the continents of patients (HROS = 2.43; 95% CI, 1.85–3.19). Conclusion Our study suggested that CTC+ was associated with a worse OS and PFS/DFS in the Asian population. The detection method, the threshold level of CTC+ , therapeutic approaches, and sampling times would not affect its diagnostic and prognostic values.
Collapse
Affiliation(s)
- Hongfang Zhao
- Clinical Medicine College, Hebei University, Baoding, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Luxuan Wang
- Department of Neurological Function Examination, Affiliated Hospital of Hebei University, Baoding, China
| | - Chuan Fang
- Clinical Medicine College, Hebei University, Baoding, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Department of Neurological Function Examination, Affiliated Hospital of Hebei University, Baoding, China
- Postdoctoral Research Station of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, China
- Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Affiliated Hospital of Hebei University, Hebei University, Baoding, China
| | - Chunhui Li
- Clinical Medicine College, Hebei University, Baoding, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Department of Neurological Function Examination, Affiliated Hospital of Hebei University, Baoding, China
- Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Affiliated Hospital of Hebei University, Hebei University, Baoding, China
| | - Lijian Zhang
- Clinical Medicine College, Hebei University, Baoding, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Department of Neurological Function Examination, Affiliated Hospital of Hebei University, Baoding, China
- Postdoctoral Research Station of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, Baoding, China
- Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Affiliated Hospital of Hebei University, Hebei University, Baoding, China
| |
Collapse
|
4
|
Geometric tumor embolic budding characterizes inflammatory breast cancer. Breast Cancer Res Treat 2023; 197:461-478. [PMID: 36473978 PMCID: PMC9734724 DOI: 10.1007/s10549-022-06819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE Inflammatory breast cancer (IBC) is characterized by numerous tumor emboli especially within dermal lymphatics. The explanation remains a mystery. METHODS This study combines experimental studies with two different IBC xenografts with image algorithmic studies utilizing human tissue microarrays (TMAs) of IBC vs non-IBC cases to support a novel hypothesis to explain IBC's sina qua non signature of florid lymphovascular emboli. RESULTS In the human TMAs, compared to tumor features like nuclear grade (size), mitosis and Ki-67 immunoreactivity which show that IBC is only modestly more proliferative with larger nuclei than non-IBC, what really sets IBC apart is the markedly greater number of tumor emboli and distinctly smaller emboli whose numbers indicate geometric or exponential differences between IBC and non-IBC. In the experimental xenograft studies, Mary-X gives rise to tight spheroids in vitro which exhibit dynamic budding into smaller daughter spheroids whereas Karen-X exhibits only loose non-budding aggregates. Furthermore Mary-X emboli also bud dramatically into smaller daughter emboli in vivo. The mechanism that regulates this involves the generation of E-cad/NTF1, a calpain-mediated cleavage 100 kDa product of 120 kDa full length membrane E-cadherin. Inhibiting this calpain-mediated cleavage of E-cadherin by blocking either the calpain site of cleavage (SC) or the site of binding (SB) with specific decapeptides that both penetrate the cell membrane and mimic either the cleavage site or the binding site on E-cadherin, inhibits the generation of E-cad/NTF1 in a dose-dependent manner, reduces spheroid compactness and decreases budding. CONCLUSION Since E-cad/NFT1 retains the p120ctn binding site but loses the α-and β-catenin sites, promoting its 360° distribution around the cell's membrane, the vacilating levels of this molecule trigger budding of both the spheroids as well as the emboli. Recurrent and geometric budding of parental emboli into daughter emboli then would account for the plethora of emboli seen in IBC.
Collapse
|
5
|
Usman M, Hameed Y, Ahmad M, Iqbal MJ, Maryam A, Mazhar A, Naz S, Tanveer R, Saeed H, Bint-E-Fatima, Ashraf A, Hadi A, Hameed Z, Tariq E, Aslam AS. SHMT2 is Associated with Tumor Purity, CD8+ T Immune Cells Infiltration, and a Novel Therapeutic Target in Four Different Human Cancers. Curr Mol Med 2023; 23:161-176. [PMID: 35023455 DOI: 10.2174/1566524022666220112142409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
AIMS This study was launched to identify the SHMT2 associated Human Cancer subtypes. BACKGROUND Cancer is the 2nd leading cause of death worldwide. Previous reports revealed the limited involvement of SHMT2 in human cancer. In the current study, we comprehensively analyzed the role of SHMT2 in 24 major subtypes of human cancers using in silico approach and identified a few subtypes that are mainly associated with SHMT2. OBJECTIVE We aim to comprehensively analyze the role of SHMT2 in 24 major subtypes of human cancers using in silico approach and identified a few subtypes that are mainly associated with SHMT2. Earlier, limited knowledge exists in the medical literature regarding the involvement of Serine Hydroxymethyltransferase 2 (SHMT2) in human cancer. METHODS In the current study, we comprehensively analyzed the role of SHMT2 in 24 major subtypes of human cancers using in silico approach and identified a few subtypes that are mainly associated with SHMT2. Pan-cancer transcriptional expression profiling of SHMT2 was done using UALCAN while further validation was performed using GENT2. For translational profiling of SHMT2, we utilized Human Protein Atlas (HPA) platform. Promoter methylation, genetic alteration, and copy number variations (CNVs) profiles were analyzed through MEXPRESS and cBioPortal. Survival analysis was carried out through Kaplan-Meier (KM) plotter platform. Pathway enrichment analysis of SHMT2 was performed using DAVID, while the gene-drug network was drawn through CTD and Cytoscape. Furthermore, in the tumor microenvironment, a correlation between tumor purity, CD8+ T immune cells infiltration, and SHMT2 expression was accessed using TIMER. RESULTS SHMT2 was found overexpressed in 24 different subtypes of human cancers and its overexpression was significantly associated with the reduced Overall survival (OS) and Relapse-free survival durations of Breast cancer (BRCA), Kidney renal papillary cell carcinoma (KIRP), Liver hepatocellular carcinoma (LIHC), and Lung adenocarcinoma (LUAD) patients. This implies that SHMT2 plays a significant role in the development and progression of these cancers. We further noticed that SHMT2 was also up-regulated in BRCA, KIRP, LIHC, and LUAD patients of different clinicopathological features. Pathways enrichment analysis revealed the involvement of SHMT2 enriched genes in five diverse pathways. Furthermore, we also explored some interesting correlations between SHMT2 expression and promoter methylation, genetic alterations, CNVs, tumor purity, and CD8+ T immune cell infiltrates. CONCLUSION Our results suggested that overexpressed SHMT2 is correlated with the reduced OS and RFS of the BRCA, KIRP, LIHC, and LUAD patients and can be a potential diagnostic and prognostic biomarker for these cancers.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yasir Hameed
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mukhtiar Ahmad
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Aghna Maryam
- Department of Biochemistry, Quaid-i-Azam University Islamabad, Pakistan
| | - Afshan Mazhar
- Department of Biochemistry, Quaid-i-Azam University Islamabad, Pakistan
| | - Saima Naz
- Department of zoology, Government Sadiq College Women University Bahawalpur, Bahawalpur, Pakistan
| | - Rida Tanveer
- University College of Conventional Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hina Saeed
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Bint-E-Fatima
- Department of Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Aneela Ashraf
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Alishba Hadi
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zahid Hameed
- Department of Bioinformatics and Biotechnology, International Islamic University Islamabad, Islamabad, Pakistan
| | - Eman Tariq
- Department of Chemistry, The University of Swabi, Swabi, Pakistan
| | - Alia Sumyya Aslam
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
6
|
Ahmed SH, Espinoza-Sánchez NA, El-Damen A, Fahim SA, Badawy MA, Greve B, El-Shinawi M, Götte M, Ibrahim SA. Small extracellular vesicle-encapsulated miR-181b-5p, miR-222-3p and let-7a-5p: Next generation plasma biopsy-based diagnostic biomarkers for inflammatory breast cancer. PLoS One 2021; 16:e0250642. [PMID: 33901254 PMCID: PMC8075236 DOI: 10.1371/journal.pone.0250642] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a rare, but aggressive entity of breast carcinoma with rapid dermal lymphatic invasion in young females. It is either poorly or misdiagnosed as mastitis because of the absence of a distinct lump. Small extracellular vesicles (sEVs) circulating in liquid biopsies are a novel class of minimally invasive diagnostic alternative to invasive tissue biopsies. They modulate cancer progression via shuttling their encapsulated cargo including microRNAs (miRNAs) into recipient cells to either trigger signaling or induce malignant transformation of targeted cells. Plasma sEVs < 200 nm were isolated using a modified cost-effective polyethylene glycol (PEG)-based precipitation method and compared to standard methods, namely ultracentrifugation and a commercial kit, where the successful isolation was verified by different approaches. We evaluated the expression levels of selected sEV-derived miR-181b-5p, miR-222-3p and let-7a-5p using quantitative real PCR (qPCR). Relative to non-IBC, our qPCR data showed that sEV-derived miR-181b-5p and miR-222-3p were significantly upregulated, whereas let-7a-5p was downregulated in IBC patients. Interestingly, receiver operating characteristic (ROC) curves analysis revealed that diagnostic accuracy of let-7a-5p alone was the highest for IBC with an area under curve (AUC) value of 0.9188, and when combined with miR-222-3p the AUC was improved to 0.973. Further, 38 hub genes were identified using bioinformatics analysis. Together, circulating sEV-derived miR-181b-5p, miR-222-3p and let-7a-5p serve as promising non-invasive diagnostic biomarkers for IBC.
Collapse
Affiliation(s)
- Sarah Hamdy Ahmed
- Biotechnology/Biomolecular Chemistry Program, Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.,Department of Radiotherapy-Radiooncology, University Hospital Münster, Münster, Germany
| | - Ahmed El-Damen
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Sarah Atef Fahim
- Biochemistry Program, Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed A Badawy
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, University Hospital Münster, Münster, Germany
| | - Mohamed El-Shinawi
- Galala University, Suez, Egypt.,Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | | |
Collapse
|