1
|
Fowler JF, Ma L, Bergman J, Horowitz P, Lavender T, Eichenfield LF, Draelos Z, Danby SG, Cork MJ. Is colloidal oat an effective emollient ingredient for the prevention and treatment of atopic dermatitis in infants? J DERMATOL TREAT 2025; 36:2487945. [PMID: 40256827 DOI: 10.1080/09546634.2025.2487945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/27/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin condition characterized by barrier dysfunction and immune dysregulation, often leading to increased allergen penetration, sensitization, and secondary infections. Colloidal oat emollients are widely used in adult AD management, but their role in pediatric AD treatment, prevention, and allergy modulation remains under investigation. METHODS A comprehensive literature review evaluated clinical and preclinical studies on colloidal oat-containing emollients in pediatric AD treatment and prevention. Studies assessing skin barrier function, immune modulation, AD prevention, food allergy risk, and healthcare utilization were included. RESULTS Colloidal oat emollients improved skin hydration, reduced transepidermal water loss (TEWL), and supported barrier repair, leading to fewer AD flares and reduced reliance on steroid treatments. Studies suggest that early, consistent use of advanced emollient formulations may lower AD incidence in high-risk infants and reduce food sensitization rates. Real-world data indicate that patients using colloidal oat emollients have fewer clinic visits and lower overall healthcare costs. Concerns about oat sensitization remain unsubstantiated in most studies. CONCLUSION Colloidal oat emollients are effective, well-tolerated, and cost-efficient for pediatric AD management. Their barrier-restorative and anti-inflammatory properties may reduce AD and allergy risk. Future research should focus on head-to-head emollient comparisons to optimize treatment strategies.
Collapse
Affiliation(s)
- Joseph F Fowler
- Dermatology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Lin Ma
- Dermatology, Beijing Children's Hospital, Beijing, China
| | | | - Paul Horowitz
- Pediatrician, Children's Hospital of Los Angeles, Los Angeles, California, USA
| | - Tina Lavender
- Centre for Childbirth, Women's and Newborn Health Liverpool School of Tropical Medicine, Liverpool, UK
| | - Lawrence F Eichenfield
- Departments of Dermatology and Pediatrics, University of California, San Diego and Rady Children's Hospital, San Diego, California, USA
| | - Zoe Draelos
- Dermatology North Carolina, High Point, North Carolina, USA
| | - Simon G Danby
- Sheffield Dermatology Research, Division of Clinical Medicine, University of Sheffield Medical School, Sheffield, UK
| | - Michael J Cork
- Sheffield Dermatology Research, University of Sheffield, Sheffield Children's Hospital, Sheffield, UK
| |
Collapse
|
2
|
Deehan EC, Al Antwan S, Witwer RS, Guerra P, John T, Monheit L. Revisiting the Concepts of Prebiotic and Prebiotic Effect in Light of Scientific and Regulatory Progress-A Consensus Paper From the Global Prebiotic Association. Adv Nutr 2024; 15:100329. [PMID: 39481540 PMCID: PMC11616045 DOI: 10.1016/j.advnut.2024.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024] Open
Abstract
The term prebiotic has been used for almost 3 decades and has undergone numerous updates over the years. The scientific literature reveals that despite continuous efforts to establish a globally unified definition to guide jurisdictional regulations and product innovations, ambiguity continues to surround the terms prebiotic and prebiotic effect, leading to products that lack in full regulatory adherence being marketed worldwide. Thus, to reflect the current state of scientific research and knowledge and for the continuous advancement of the category, an update to the current prebiotic definition is warranted. This update includes removing the term selectivity, considering additional locations of action besides the gut, highlighting prebiotic performance benefits such as cognitive and athletic, and providing a clear standalone definition for prebiotic effect. The Global Prebiotic Association (GPA) is a leading information and industry hub committed to raising awareness about prebiotics, their emerging and well-established health benefits, and prebiotic product integrity and efficacy. In this position paper, GPA builds on previous prebiotic definitions to propose the following expanded definition for prebiotic: "a compound or ingredient that is utilized by the microbiota producing a health or performance benefit." In addition to prebiotic, GPA also defines prebiotic effect as "a health or performance benefit that arises from alteration of the composition and/or activity of the microbiota, as a direct or indirect result of the utilization of a specific and well-defined compound or ingredient by microorganisms." With these 2 definitions, GPA aims to paint a clearer picture for the term prebiotic, and by incorporating an industry point of view, these updated definitions may be used alongside current scientific and regulatory perspectives to move the category forward.
Collapse
Affiliation(s)
- Edward C Deehan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, United States; Nebraska Food for Health Center, University of Nebraska, Lincoln, NE, United States; Scientific & Technical Committee, Global Prebiotic Association, Chicago, IL, United States.
| | | | - Rhonda S Witwer
- Scientific & Technical Committee, Global Prebiotic Association, Chicago, IL, United States; ADM, Decatur, IL, United States
| | - Paula Guerra
- Scientific & Technical Committee, Global Prebiotic Association, Chicago, IL, United States; SGS Nutrasource, Guelph, Ontario, Canada.
| | - Tania John
- Scientific & Technical Committee, Global Prebiotic Association, Chicago, IL, United States; SGS Nutrasource, Guelph, Ontario, Canada
| | - Len Monheit
- Scientific & Technical Committee, Global Prebiotic Association, Chicago, IL, United States; Global Prebiotic Association/Industry Transparency Center, Chicago, IL, United States
| |
Collapse
|
3
|
Piazzesi A, Scanu M, Ciprandi G, Putignani L. Modulations of the skin microbiome in skin disorders: A narrative review from a wound care perspective. Int Wound J 2024; 21:e70087. [PMID: 39379177 PMCID: PMC11461044 DOI: 10.1111/iwj.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
The cutaneous microbiome represents a highly dynamic community of bacteria, fungi and viruses. Scientific evidence, particularly from the last two decades, has revealed that these organisms are far from being inconsequential microscopic hitchhikers on the human body, nor are they all opportunistic pathogens waiting for the chance to penetrate the skin barrier and cause infection. In this review, we will describe how dermatological diseases have been found to be associated with disruptions and imbalances in the skin microbiome and how this new evidence had shaped the diagnosis and clinical practice relating to these disorders. We will identify the microbial agents which have been found to directly exacerbate skin diseases, as well as those which can ameliorate many of the symptoms associated with dermatological disorders. Furthermore, we will discuss the studies which suggest that bacteriotherapy, either by topical use of probiotics or by bacteria-derived compounds, can rectify skin microbial imbalances, thereby offering a promising alternative to antibiotic treatment and reducing the risks of antibiotic resistance.
Collapse
Affiliation(s)
- Antonia Piazzesi
- Immunology, Rheumatology and Infectious Diseases Research Unit, Unit of the MicrobiomeBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Matteo Scanu
- Immunology, Rheumatology and Infectious Diseases Research Unit, Unit of the MicrobiomeBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Guido Ciprandi
- Research Institute Division of Plastic and Maxillofacial Surgery, Department of SurgeryBambino Gesu' Children's Hospital, IRCCSRomeItaly
| | - Lorenza Putignani
- Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics; and Immunology, Rheumatology and Infectious Diseases Research Unit, Unit of the MicrobiomeBambino Gesù Children's Hospital, IRCCSRomeItaly
| |
Collapse
|
4
|
Pagac MP, Gempeler M, Campiche R. A New Generation of Postbiotics for Skin and Scalp: In Situ Production of Lipid Metabolites by Malassezia. Microorganisms 2024; 12:1711. [PMID: 39203553 PMCID: PMC11357556 DOI: 10.3390/microorganisms12081711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
Effects of pre- and probiotics on intestinal health are well researched and microbiome-targeting solutions are commercially available. Even though a trend to appreciate the presence of certain microbes on the skin is seeing an increase in momentum, our understanding is limited as to whether the utilization of skin-resident microbes for beneficial effects holds the same potential as the targeted manipulation of the gut microflora. Here, we present a selection of molecular mechanisms of cross-communication between human skin and the skin microbial community and the impact of these interactions on the host's cutaneous health with implications for the development of skin cosmetic and therapeutic solutions. Malassezia yeasts, as the main fungal representatives of the skin microfloral community, interact with the human host skin via lipid mediators, of which several are characterized by exhibiting potent anti-inflammatory activities. This review therefore puts a spotlight on Malassezia and provides a comprehensive overview of the current state of knowledge about these fungal-derived lipid mediators and their capability to reduce aesthetical and sensory burdens, such as redness and itching, commonly associated with inflammatory skin conditions. Finally, several examples of current skin microbiome-based interventions for cosmetic solutions are discussed, and models are presented for the use of skin-resident microbes as endogenous bio-manufacturing platforms for the in situ supplementation of the skin with beneficial metabolites.
Collapse
Affiliation(s)
- Martin Patrick Pagac
- DSM-Firmenich, Perfumery & Beauty, Wurmisweg 576, CH-4303 Kaiseraugst, Switzerland; (M.G.); (R.C.)
| | | | | |
Collapse
|
5
|
D’Arcangelo S, Di Fermo P, Diban F, Ferrone V, D’Ercole S, Di Giulio M, Di Lodovico S. Staphylococcus aureus/Staphylococcus epidermidis from skin microbiota are balanced by Pomegranate peel extract: An eco-sustainable approach. PLoS One 2024; 19:e0308211. [PMID: 39088519 PMCID: PMC11293756 DOI: 10.1371/journal.pone.0308211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024] Open
Abstract
The imbalance in skin microbiota is characterized by an increased number of pathogens in respect to commensal microorganisms. Starting from a skin microbiota collection, the aim of this work was to evaluate the possible role of Pomegranate (Punica granatum L.) Peel Extract (PPE) in restoring the skin microbiota balance acting on Staphylococcus spp. PPE was extracted following green methodology by using n-butane and the Dimethyl Ether (DME) solvents and analyzed for phytochemical composition and antimicrobial activity. The PPE antimicrobial action was evaluated against Gram +, Gram - bacteria and yeast reference strains and the most effective extract was tested against the main skin microbiota isolated strains. PPE extracted with DME showed the best antimicrobial action with MICs ranging from 1 to 128 mg/mL; the main active compounds were Catechin, Quercetin, Vanillic acid and Gallic acid. The PPE in DME anti-adhesive effect was examined against S. epidermidis and S. aureus mono and dual-species biofilm formation by biomass quantification and CFU/mL determination. The extract toxicity was evaluated by using Galleria mellonella larvae in vivo model. The extract displayed a significant anti-adhesive activity with a remarkable species-specific action at 4 and 8 mg/mL against S. epidermidis and S. aureus mono and dual-species biofilms. PPE in DME could represent an eco-sustainable non-toxic strategy to affect the Staphylococcal skin colonization in a species-specific way. The innovation of this work is represented by the reuse of food waste to balance skin microbiota.
Collapse
Affiliation(s)
- Sara D’Arcangelo
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Paola Di Fermo
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti- Pescara, Chieti, Italy
| | - Firas Diban
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Vincenzo Ferrone
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Simonetta D’Ercole
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti- Pescara, Chieti, Italy
| | - Mara Di Giulio
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Silvia Di Lodovico
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| |
Collapse
|
6
|
Zidarič T, Gradišnik L, Frangež T, Šoštarič M, Korunič E, Maver T, Maver U. Novel 3D printed polysaccharide-based materials with prebiotic activity for potential treatment of diaper rash. Int J Biol Macromol 2024; 269:131958. [PMID: 38697421 DOI: 10.1016/j.ijbiomac.2024.131958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Diaper rash, mainly occurring as erythema and itching in the diaper area, causes considerable distress to infants and toddlers. Increasing evidence suggests that an unequal distribution of microorganisms on the skin contributes to the development of diaper dermatitis. Probiotic bacteria, like Staphylococcus epidermidis, are crucial for maintaining a healthy balance in the skin's microbiome, among others, through their fermentative metabolites, such as short-chain fatty acids. Using a defined prebiotic as a carbon source (e.g., as part of the diaper formulation) can selectively trigger the fermentation of probiotic bacteria. A proper material choice can reduce diaper rash incidence by diminishing the skin exposure to wetness and faeces. Using 3D printing, we fabricated carbon-rich materials for the top sheet layer of baby diapers that enhance the probiotic activity of S. epidermidis. The developed materials' printability, chemical composition, swelling ability, and degradation rate were analysed. In addition, microbiological tests evaluated their potential as a source of in situ short-chain fatty acid production. Finally, biocompatibility testing with skin cells evaluated their safety for potential use as part of diapers. The results demonstrate a cost-effective approach for producing novel materials that can tailor the ecological balance of the skin microflora and help treat diaper rash.
Collapse
Affiliation(s)
- Tanja Zidarič
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, 2000 Maribor, Slovenia.
| | - Lidija Gradišnik
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Tjaša Frangež
- National Laboratory for Health, Environment and Food, Centre for Microbiological Analysis of Food, Water and Other Environmental Samples, Maribor, Slovenia, Prvomajska ulica 1, 2000, Maribor, Slovenia
| | - Mojca Šoštarič
- National Laboratory for Health, Environment and Food, Centre for Microbiological Analysis of Food, Water and Other Environmental Samples, Maribor, Slovenia, Prvomajska ulica 1, 2000, Maribor, Slovenia
| | - Eva Korunič
- National Laboratory for Health, Environment and Food, Centre for Chemical Analysis of Food, Water and Other Environmental Samples, Maribor, Slovenia, Prvomajska ulica 1, 2000, Maribor, Slovenia
| | - Tina Maver
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, 2000 Maribor, Slovenia; University of Maribor, Faculty of Medicine, Department of Pharmacology, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Uroš Maver
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, 2000 Maribor, Slovenia; University of Maribor, Faculty of Medicine, Department of Pharmacology, Taborska ulica 8, 2000 Maribor, Slovenia.
| |
Collapse
|
7
|
Greenzaid JD, Chan LJ, Chandani BM, Kiritsis NR, Feldman SR. Microbiome modulators for atopic eczema: a systematic review of experimental and investigational therapeutics. Expert Opin Investig Drugs 2024; 33:415-430. [PMID: 38441984 DOI: 10.1080/13543784.2024.2326625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Atopic dermatitis (AD) is a common inflammatory cutaneous disease that arises due to dysregulation of the Th2 immune response, impaired skin barrier integrity, and dysbiosis of the skin and gut microbiota. An abundance of Staphylococcus aureus biofilms in AD lesions increases the Th2 immune response, and gut bacteria release breakdown products such as Short Chain Fatty Acids that regulate the systemic immune response. AREAS COVERED We aim to evaluate therapies that modulate the microbiome in humans and discuss the clinical implications of these treatments. We performed a review of the literature in which 2,673 records were screened, and describe the findings of 108 studies that were included after full-text review. All included studies discussed the effects of therapies on the human microbiome and AD severity. Oral probiotics, topical probiotics, biologics, and investigational therapies were included in our analysis. EXPERT OPINION Oral probiotics demonstrate mixed efficacy at relieving AD symptoms. Topical probiotics reduce S. aureus abundance in AD lesional skin, yet for moderate-severe disease, these therapies may not reduce AD severity scores to the standard of biologics. Dupilumab and tralokinumab target key inflammatory pathways in AD and modulate the skin microbiome, further improving disease severity.
Collapse
Affiliation(s)
- Jonathan D Greenzaid
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Lina J Chan
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Brittany M Chandani
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Nicholas R Kiritsis
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Steven R Feldman
- Center for Dermatology Research, Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Social Sciences & Health Policy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
8
|
Whiting C, Abdel Azim S, Friedman A. The Skin Microbiome and its Significance for Dermatologists. Am J Clin Dermatol 2024; 25:169-177. [PMID: 38252188 DOI: 10.1007/s40257-023-00842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
The skin is a physical and immunological barrier to the external environment. Its large surface area is colonized by diverse communities of microorganisms, including bacteria, viruses, fungi, and Demodex species mites. These microorganisms and their genetic material together create the skin microbiome. Physiologic and anatomic properties of skin sites create biogeographical habitats (dry, moist, and sebaceous) where distinct microbiota communities reside. Although, in general, the composition of these habitats is maintained from person to person, the skin microbiome of an individual also has unique microbial features. Dysbiosis occurs when the normal abundance, composition, or location of the microbiota is changed, most notably there is a decrease in flora diversity. Certain skin diseases, including atopic dermatitis, rosacea, and psoriasis are associated with cutaneous dysbiosis, and even disruption of the gut microbiota. Studies have shown that current treatments for these dermatologic conditions can alter/stabilize the skin microbiome, and there is emerging research detailing the impact of prebiotics, probiotics, and postbiotics on these conditions. Although clinical guidelines do not currently exist, clinical studies support the safety and possible benefits of using topical prebiotics and postbiotics and oral probiotics for a variety of skin conditions. Until such guidelines exist, utilizing carefully designed clinical studies to inform clinical practice is recommended.
Collapse
Affiliation(s)
- Cleo Whiting
- Department of Dermatology, George Washington University School of Medicine and Health Sciences, 2150 Pennsylvania Ave. NW, Suite 2b-430, Washington, DC, 20037, USA
| | - Sara Abdel Azim
- Department of Dermatology, George Washington University School of Medicine and Health Sciences, 2150 Pennsylvania Ave. NW, Suite 2b-430, Washington, DC, 20037, USA
- Georgetown University School of Medicine, Washington, DC, USA
| | - Adam Friedman
- Department of Dermatology, George Washington University School of Medicine and Health Sciences, 2150 Pennsylvania Ave. NW, Suite 2b-430, Washington, DC, 20037, USA.
| |
Collapse
|
9
|
Han JH, Kim HS. Skin Deep: The Potential of Microbiome Cosmetics. J Microbiol 2024; 62:181-199. [PMID: 38625646 DOI: 10.1007/s12275-024-00128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 04/17/2024]
Abstract
The interplay between the skin microbiome and its host is a complex facet of dermatological health and has become a critical focus in the development of microbiome cosmetics. The skin microbiome, comprising various microorganisms, is essential from birth, develops over the lifespan, and performs vital roles in protecting our body against pathogens, training the immune system, and facilitating the breakdown of organic matter. Dysbiosis, an imbalance of these microorganisms, has been implicated in a number of skin conditions such as acne, atopic dermatitis, and skin cancer. Recent scientific findings have spurred cosmetic companies to develop products that preserve and enhance the skin's microbial diversity balance. These products may incorporate elements like prebiotics, probiotics, and postbiotics, which are beneficial for the skin microbiome. Beyond topical products, there's increasing interest in ingestible beauty supplements (i.e. oral probiotics), highlighting the connection between the gut and skin. This review examines the influence of the microbiome on skin health and the emerging trends of microbiome skincare products.
Collapse
Affiliation(s)
- Ju Hee Han
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Hei Sung Kim
- Department of Dermatology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
10
|
Yang J, Park S, Kim HJ, Lee SJ, Jung WH. The Interkingdom Interaction with Staphylococcus Influences the Antifungal Susceptibility of the Cutaneous Fungus Malassezia. J Microbiol Biotechnol 2023; 33:180-187. [PMID: 36575858 PMCID: PMC9998211 DOI: 10.4014/jmb.2210.10039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
The skin is a dynamic ecosystem on which diverse microbes reside. The interkingdom interaction between microbial species in the skin microbiota is thought to influence the health and disease of the skin although the roles of the intra- and interkingdom interactions remain to be elucidated. In this context, the interactions between Malassezia and Staphylococcus, the most dominant microorganisms in the skin microbiota, have gained attention. This study investigated how the interaction between Malassezia and Staphylococcus affected the antifungal susceptibility of the fungus to the azole antifungal drug ketoconazole. The susceptibility was significantly decreased when Malassezia was co-cultured with Staphylococcus. We found that acidification of the environment by organic acids produced by Staphylococcus influenced the decrease of the ketoconazole susceptibility of M. restricta in the co-culturing condition. Furthermore, our data demonstrated that the significant increased ergosterol content and cell membrane and wall thickness of the M. restricta cells grown in the acidic environment may be the main cause of the altered azole susceptibility of the fungus. Overall, our study suggests that the interaction between Malassezia and Staphylococcus influences the antifungal susceptibility of the fungus and that pH has a critical role in the polymicrobial interaction in the skin environment.
Collapse
Affiliation(s)
- Juan Yang
- Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sungmin Park
- Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hyun Ju Kim
- Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Won Hee Jung
- Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|
11
|
Staphylococcus epidermidis and its dual lifestyle in skin health and infection. Nat Rev Microbiol 2023; 21:97-111. [PMID: 36042296 PMCID: PMC9903335 DOI: 10.1038/s41579-022-00780-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 01/20/2023]
Abstract
The coagulase-negative bacterium Staphylococcus epidermidis is a member of the human skin microbiota. S. epidermidis is not merely a passive resident on skin but actively primes the cutaneous immune response, maintains skin homeostasis and prevents opportunistic pathogens from causing disease via colonization resistance. However, it is now appreciated that S. epidermidis and its interactions with the host exist on a spectrum of potential pathogenicity derived from its high strain-level heterogeneity. S. epidermidis is the most common cause of implant-associated infections and is a canonical opportunistic biofilm former. Additional emerging evidence suggests that some strains of S. epidermidis may contribute to the pathogenesis of common skin diseases. Here, we highlight new developments in our understanding of S. epidermidis strain diversity, skin colonization dynamics and its multifaceted interactions with the host and other members of the skin microbiota.
Collapse
|