1
|
Siqueira Palmieri MG, Pittella F, Tavares GD, Silva AH, Creczynski Pasa TB, Vieira Aarestrup BJ, Monti D, Paganini V, Tampucci S, Burgalassi S, do Amaral Corrêa JO. Novel natural lipids based NLC containing finasteride improved androgenetic alopecia treatment in rats. Int J Pharm 2024; 666:124804. [PMID: 39368674 DOI: 10.1016/j.ijpharm.2024.124804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
Androgenetic alopecia (AGA) is the most common hair loss disorder, affecting millions of men and women worldwide. Current formulations used to treat this condition often lead to a wide variety of side effects, ranging from allergies to sexual disfunction, especially when those drugs are administered orally. In this study, we developed and tested unique formulations containing nanostructured lipid carriers (NLC) composed of lipids extracted from fruit seeds, carrying finasteride to enhance efficacy of AGA treatment. By stabilizing the hydrophobic compounds in the solid matrix, three formulations of NLC were engineered and successfully prepared. Further an in vivo model of AGA was induced in rats by the administration of testosterone, as a platform to evaluate the efficiency of the formulations. The chosen formulation exhibited high bioavailability, medium size of 124.5 nm and PdI of 0.143, without systemic absorption. In addition, it promoted efficient and significant follicle restoration in AGA induced rats by increasing number of active bulbs and showed to be a safe formulation for topical application. The results of this research indicate that the presented formulation has significant potential to yield improved outcomes in AGA treatment.
Collapse
Affiliation(s)
- Miguel Gontijo Siqueira Palmieri
- Universidade Federal de Juiz de Fora, Department of Pharmaceutical Sciences, Juiz de Fora 36038330, Minas Gerais, Brazil; University of Pisa, Department of Pharmacy, Pisa 56122, Toscana, Italy
| | - Frederico Pittella
- Universidade Federal de Juiz de Fora, Department of Pharmaceutical Sciences, Juiz de Fora 36038330, Minas Gerais, Brazil.
| | - Guilherme Diniz Tavares
- Universidade Federal de Juiz de Fora, Department of Pharmaceutical Sciences, Juiz de Fora 36038330, Minas Gerais, Brazil
| | - Adny Henrique Silva
- Universidade Federal de Santa Catarina, Department of Pharmaceutical Sciences, Florianópolis 88035972, Santa Catarina, Brazil
| | - Tânia Beatriz Creczynski Pasa
- Universidade Federal de Santa Catarina, Department of Pharmaceutical Sciences, Florianópolis 88035972, Santa Catarina, Brazil
| | | | - Daniela Monti
- University of Pisa, Department of Pharmacy, Pisa 56122, Toscana, Italy
| | | | - Silvia Tampucci
- University of Pisa, Department of Pharmacy, Pisa 56122, Toscana, Italy
| | - Susi Burgalassi
- University of Pisa, Department of Pharmacy, Pisa 56122, Toscana, Italy
| | - José Otávio do Amaral Corrêa
- Universidade Federal de Juiz de Fora, Department of Pharmaceutical Sciences, Juiz de Fora 36038330, Minas Gerais, Brazil
| |
Collapse
|
2
|
Fan W, Liu J, Liu Q. Exploring the potential mechanism and molecular targets of Taohong Siwu Decoction against deep vein thrombosis based on network pharmacology and analysis docking. Medicine (Baltimore) 2024; 103:e36220. [PMID: 38215128 PMCID: PMC10783296 DOI: 10.1097/md.0000000000036220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/30/2023] [Indexed: 01/14/2024] Open
Abstract
This study aims to investigate the mechanism of Taohong Siwu Decoction (THSWD) against deep vein thrombosis (DVT) using network pharmacology and molecular docking technology. We used the Traditional Chinese Medicine Systems Pharmacology database and reviewed literature to identify the main chemical components of THSWD. To find targets for DVT, we consulted GeneCards, Therapeutic Target Database, and PharmGKB databases. We used Cytoscape 3.8.2 software to construct herb-disease-gene-target networks. Additionally, we integrated drug targets and disease targets on the STRING platform to create a protein-protein interaction network. Then, we conducted Kyoto Encyclopedia of Genes and Genomes and gene ontology analysis. Finally, We employed the molecular docking method to validate our findings. We identified 56 potential targets associated with DVT and found 61 effective components. beta-sitosterol, quercetin, and kaempferol were the most prominent among these components. Our analysis of the protein-protein interaction network revealed that IL6, L1B, and AKT1 had the highest degree of association. Gene ontology analysis showed that THSWD treatment for DVT may involve response to inorganic substances, negative regulation of cell differentiation, plasma membrane protein complex, positive regulation of phosphorylation, and signaling receptor regulator activity. Kyoto Encyclopedia of Genes and Genomes analysis indicated that lipid and atherosclerosis, pathways in cancer, as well as the PI3K-Akt pathway are the main signal pathways involved. Molecular docking results demonstrated strong binding affinity between beta-sitosterol, quercetin, kaempferol, and AKT1 proteins as well as IL1B and IL6 proteins. The main targets for THSWD treatment of DVT may include AKT1, IL1B, and IL6. Beta-sitosterol, quercetin, and kaempferol may be the active ingredients responsible for producing this effect. These compounds may slow down the progression of DVT by regulating the inflammatory response through the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Wei Fan
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, Sichuan, China
| | - Jinhui Liu
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, Sichuan, China
| | - Qingyan Liu
- The Operating Room, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Ji C, Ma J, Feng C, Zhu H, Gao Y, Huang J, Shen H, Wei Y. Promotion of Hair Regrowth in Androgenetic Alopecia with Supplemented Erzhi Wan: Exploring Its Mechanism Using Network Pharmacology and Molecular Docking. Clin Cosmet Investig Dermatol 2023; 16:2995-3022. [PMID: 37901149 PMCID: PMC10612515 DOI: 10.2147/ccid.s425295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023]
Abstract
Purpose Supplemented Erzhi Wan (SEZW) is a Traditional Chinese Medicine commonly used in the treatment of androgenetic alopecia (AGA). This study aims to verify the effectiveness of SEZW for the treatment of AGA in mice and explore the potential molecular mechanisms underlying its function using network pharmacology and molecular docking. Methods Forty mice were divided into five groups: Control, AGA-model, AGA-Positive, SEZW Low Dose, and SEZW High Dose. Hair regrowth in mice was evaluated by scoring hair on days 0, 14, and 28 post-treatment and weighing mouse hair on day 28 post-treatment. The targets of the active compounds of SEZW were obtained using the Traditional Chinese Medicine Database. AGA-related targets were downloaded from five databases. Then, the overlapping genes were identified. A protein-protein interaction network was constructed using the STRING database. Hub targets were determined through analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Finally, molecular docking of active compounds and hub targets was performed. Results Hair regrowth in mice in the SEZW treatment groups was significantly enhanced relative to that in the AGA-model mice. A total of 59 potential drug-disease targets were identified. Based on the GO/KEGG analysis results, oxidative stress and gland development were identified as potential mechanisms of action of SEZW in AGA treatment. The PI3K-Akt and AGE-RAGE signaling pathways and seven hub targets were identified as the potential underlying mechanism of SEZW function. Molecular docking results showed that the most active SEZW compounds bind stably to several of the candidate disease targets. Conclusion SEZW is effective in the treatment of AGA in a mouse model. Combined with network pharmacological analysis, the potential mechanisms, signaling pathways, and hub targets of SEZW in the treatment of AGA were identified, providing new ideas for further studies.
Collapse
Affiliation(s)
- Chen Ji
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, People’s Republic of China
| | - Jun Ma
- Department of Dermatology, the Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Chengcheng Feng
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, People’s Republic of China
| | - Hongliu Zhu
- Department of Dermatology, Jiangyin Hospital of Traditional Chinese Medicine, Wuxi, People’s Republic of China
| | - Yanwei Gao
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, People’s Republic of China
| | - Jun Huang
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, People’s Republic of China
| | - Hui Shen
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, People’s Republic of China
| | - Yuegang Wei
- First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
4
|
Fang T, Xu R, Sun S, He Y, Yan Y, Fu H, Luo H, Cao Y, Tao M. Caizhixuan hair tonic regulates both apoptosis and the PI3K/Akt pathway to treat androgenetic alopecia. PLoS One 2023; 18:e0282427. [PMID: 36827412 PMCID: PMC9956876 DOI: 10.1371/journal.pone.0282427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
PURPOSE Caizhixuan hair tonic (CZX) is a topical traditional Chinese medicine (TCM) preparation for the treatment of androgenetic alopecia (AGA). However, its active compounds and underlying mechanism for treating AGA are still unclear. The purpose of this study was to observe the effects of CZX on hair growth promotion in AGA mice and to explore the active components and mechanism. METHODS Testosterone propionate was administered subcutaneously to mice to establish an AGA mouse model. The therapeutic effects of CZX on AGA were evaluated by observing skin colour changes, hair growth time, and average hair length; calculating the hair growth score; and performing skin histopathological analysis. Following that, CZX chemical components were analysed by ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Network pharmacology was used to predict the major effects and possible mechanisms of CZX for the treatment of AGA. Furthermore, RT-qPCR and Western blotting were performed to assess the expression of key genes and proteins involved in PI3K/Akt and apoptosis pathways in order to validate CZX's predicted mechanism in AGA. RESULTS CZX promoted hair growth and improved the pathological morphology of hair follicles in the skin. In UPLC-Q-TOF/MS analysis, 69 components from CZX were isolated. Based on network pharmacology, CZX alleviated AGA by regulating PI3K/Akt and apoptosis pathways. According to RT-qPCR and Western blotting, CZX upregulated the expressions of PI3K, Akt, and Bcl-2, while downregulating that of Bax and caspase-3. CONCLUSIONS CZX promotes hair growth to treat AGA by regulating the PI3K/Akt and apoptosis pathways.
Collapse
Affiliation(s)
- Tingting Fang
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ruofei Xu
- Longyou County People’s Hospital, Longyou, Zhejiang, China
| | - Shaopeng Sun
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yineng He
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yi Yan
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hongyang Fu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hongbin Luo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yi Cao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Maocan Tao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China,* E-mail:
| |
Collapse
|