1
|
Durcan C, Hossain M, Chagnon G, Perić D, Girard E. Mechanical experimentation of the gastrointestinal tract: a systematic review. Biomech Model Mechanobiol 2024; 23:23-59. [PMID: 37935880 PMCID: PMC10901955 DOI: 10.1007/s10237-023-01773-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/10/2023] [Indexed: 11/09/2023]
Abstract
The gastrointestinal (GI) organs of the human body are responsible for transporting and extracting nutrients from food and drink, as well as excreting solid waste. Biomechanical experimentation of the GI organs provides insight into the mechanisms involved in their normal physiological functions, as well as understanding of how diseases can cause disruption to these. Additionally, experimental findings form the basis of all finite element (FE) modelling of these organs, which have a wide array of applications within medicine and engineering. This systematic review summarises the experimental studies that are currently in the literature (n = 247) and outlines the areas in which experimentation is lacking, highlighting what is still required in order to more fully understand the mechanical behaviour of the GI organs. These include (i) more human data, allowing for more accurate modelling for applications within medicine, (ii) an increase in time-dependent studies, and (iii) more sophisticated in vivo testing methods which allow for both the layer- and direction-dependent characterisation of the GI organs. The findings of this review can also be used to identify experimental data for the readers' own constitutive or FE modelling as the experimental studies have been grouped in terms of organ (oesophagus, stomach, small intestine, large intestine or rectum), test condition (ex vivo or in vivo), number of directions studied (isotropic or anisotropic), species family (human, porcine, feline etc.), tissue condition (intact wall or layer-dependent) and the type of test performed (biaxial tension, inflation-extension, distension (pressure-diameter), etc.). Furthermore, the studies that investigated the time-dependent (viscoelastic) behaviour of the tissues have been presented.
Collapse
Affiliation(s)
- Ciara Durcan
- Zienkiewicz Centre for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, UK
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Mokarram Hossain
- Zienkiewicz Centre for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, UK.
| | - Grégory Chagnon
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Djordje Perić
- Zienkiewicz Centre for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, UK
| | - Edouard Girard
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
- Laboratoire d'Anatomie des Alpes Françaises, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
2
|
Yang X, Zhao J, Li H, Pan L, Guo J, Li J, Zhang Y, Chen P, Li P. Effect of Tangshen formula on the remodeling of small intestine and colon in Zucker diabetic fatty rats. Heliyon 2023; 9:e21007. [PMID: 37886764 PMCID: PMC10597860 DOI: 10.1016/j.heliyon.2023.e21007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Background and aim Previous study have demonstrated that Tangshen Formula (TSF) could attenuate colonic histomorphological remodeling in the diabetic rat model induced by high fat diet plus low dosage streptozotocin (STZ). However, it is not clear whether TSF has same effect on small intestine and the effect on biomechanical properties of bowel. The aim of this study is to investigate the effect of TSF on histomorphological and biomechanical remodeling of small intestine and colon by using Zucker Diabetic Fatty (ZDF) Rat model. Materials and methods ZDF rats (obese fa/fa) with blood glucose higher than 11.7 mmol/L were divided into ZDF group (diabetic control group) and ZDF + TSF group (TSF treatment group), the later were intragastrically administered TSF. The ZDF rats (lean fa/+) were served as normal control (ZL) group. The rats in the ZL and ZDF groups were administered with saline. The experimental period covered from 8 weeks to 24 weeks. At the end of experiment, the ileal and colonic segments were studied in vitro. The histomorphometry and biomechanical parameters were measured. Results Compared with ZL group histomorphologically, the wet weight per unit length, wall thickness, wall area and fractions of total and type I and type III collagen in different layers for both ileum and colon increased in ZDF group. Those increasing parameters were partially inhibited in ZDF + TSF group. Compared with ZL group biomechanically, ZDF and ZDF + TSF groups had smaller opening angle and residual strain in ileum, and bigger opening angle and residual strain in colon. Whereas the wall became softer in circumferential direction and stiffer in longitudinal direction for both ileum and colon. However, no difference of biomechanical parameters was found between ZDF and ZDF + TSF groups. Conclusion The histomorphological and biomechanical remodeling of ileum and colon were happened in ZDF rats (obese fa/fa). TSF could partly attenuate ileal and colonic histomorphological remodeling rather than biomechanical remodeling.
Collapse
Affiliation(s)
- Xin Yang
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing (100029), China
| | - Jingbo Zhao
- Anbiping (Chongqing) Pathological Diagnosis Center, Chongqing, China
| | - Hong Li
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing (100029), China
| | - Lin Pan
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing (100029), China
| | - Jing Guo
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing (100029), China
| | - Jing Li
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing (100029), China
| | - Yuting Zhang
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing (100029), China
| | - Pengmin Chen
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing (100029), China
| | - Ping Li
- Beijing Key Lab Immune-Mediated Inflammatory Diseases, Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing (100029), China
| |
Collapse
|
3
|
Bao L, Zhao J, Liao D, Wang G, Gregersen H. Pressure overload changes mesenteric afferent nerve responses in a stress-dependent way in a fasting rat model. Biomech Model Mechanobiol 2020; 19:1741-1753. [PMID: 32072371 DOI: 10.1007/s10237-020-01305-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/06/2020] [Indexed: 12/28/2022]
Abstract
It is well known that overload changes the mechanical properties of biological tissues and fasting changes the responsiveness of intestinal afferents. This study aimed to characterize the effect of overload on mechanosensitivity in mesenteric afferent nerves in normal and fasted Sprague-Dawley rats. Food was restricted for 7 days in the Fasting group. Jejunal whole afferent nerve firing was recorded during three distensions, i.e., ramp distension to 80 cmH2O luminal pressure (D1), sustained distension to 120 cmH2O for 2 min (D2), and again to 80 cmH2O (D3). Multiunit afferent recordings were separated into low-threshold (LT) and wide-dynamic-range (WDR) single-unit activity for D1 and D3. Intestinal deformation (strain), distension load (stress), and firing frequency of mesenteric afferent nerve bundles [spike rate increase ratio (SRIR)] were compared at 20 cmH2O and 40 cmH2O and maximum pressure levels among distensions and groups. SRIR and stress changes showed the same pattern in all distensions. The SRIR and stress were larger in the Fasting group compared to the Control group (P < 0.01). SRIR was lower in D3 compared to D1 in controls (P < 0.05) and fasting rats (P < 0.01). Total single units and LT were significantly lower in Fasting group than in Controls at D3. LT was significantly higher in D3 than in D1 in Controls. Furthermore, correlation was found between SRIR with stress (R = 0.653, P < 0.001). In conclusion, overload decreased afferent mechanosensitivity in a stress-dependent way and was most pronounced in fasting rats. Fasting shifts LT to WDR and high pressure shifts WDR to LT in response to mechanical stimulation.
Collapse
Affiliation(s)
- Lingxia Bao
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400044, China.,Department of Clinical Medicine, Giome Academia, Aarhus University, 8200, Aarhus N, Denmark
| | - Jingbo Zhao
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400044, China.,Department of Clinical Medicine, Giome Academia, Aarhus University, 8200, Aarhus N, Denmark
| | - Donghua Liao
- Department of Clinical Medicine, Giome Academia, Aarhus University, 8200, Aarhus N, Denmark.,Department of Gastroenterology and Hepatology, Mech-Sense, Aalborg University Hospital and Clinical Institute, Faculty of Health Sciences, Aalborg University, Aalborg, Denmark
| | - Guixue Wang
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Hans Gregersen
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400044, China. .,Department of Surgery, GIOME, the Chinese University of Hong Kong, Pok Fu Lam, Hong Kong, SAR. .,Department of Surgery, Clinical Science Building, GIOME, Prince of Wales Hospital, Ngan Street, Shatin, Hong Kong.
| |
Collapse
|
4
|
Implications of rectal preconditioning for interpretation of sensory-motor data. J Biomech 2020; 99:109541. [PMID: 31787257 DOI: 10.1016/j.jbiomech.2019.109541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 11/23/2022]
Abstract
Testing of biomechanical properties of intestine requires the tissue to be preconditioned by applying cyclic loading to obtain repeatable mechanical data. However, little is known about the mechanosensory properties during intestinal preconditioning. We aimed to study the relationship between mechanical preconditioning of the human rectum and sensory response. Three fast rectal bag distensions to the pain threshold were done in seven healthy females. A visual analog scale (VAS) was used for sensory assessment. At each distension, we determined (1) time, bag cross-sectional area (CSA), radius (r), r/r0, pressure and tension to reach VAS = 1, 3 and 5 (pain threshold); (2) the same parameters at induced contraction start; (3) CSA where the pressure started to increase (CSAP>baseline) and (4) the number of contractions. The time, CSA, r/r0 and tension to reach VAS = 1 and VAS = 3 increased from distension 1 to 3 (4.9 < F < 11.5, 0.05 > P > 0.007), primarily due to difference between the first and second distension. For VAS = 5, r/r0 was smaller in distension 3 than distension 1 (P < 0.05), whereas time, CSA and tension did not differ between distensions (P > 0.5). Compared with distension 1, CSA, r/r0 and tension at contraction start, and CSAP>baseline were bigger in distensions 2 and 3 (5.5 < F < 10.9, 0.05 > P > 0.009). The pressure to reach the VAS levels, the contraction numbers and pressure at contraction start did not differ among distensions (P > 0.6). During mechanical preconditioning, CSA, tension and deformation increased at sub-pain levels, reflecting sensory adaptation. The data point to acute remodeling of a strain-dependent mechanism in the rectal wall.
Collapse
|
5
|
Bao L, Zhao J, Liao D, Wang G, Gregersen H. Refeeding reverses fasting-induced remodeling of afferent nerve activity in rat small intestine. Biomech Model Mechanobiol 2019; 18:1915-1926. [DOI: 10.1007/s10237-019-01185-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023]
|
6
|
Liu Y, Zhao J, Liao D, Wang G, Gregersen H. Stress-strain analysis of duodenal contractility in response to flow and ramp distension in rabbits fed low-fiber diet. Neurogastroenterol Motil 2019; 31:e13476. [PMID: 30246440 DOI: 10.1111/nmo.13476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Previously we demonstrated that low-fiber diet in rabbits affects the passive mechanomorphological properties in the small intestine, resulting in reduced intestinal wall thickness and collagen content, as well as intestinal wall softening. The aim of the present study was to evaluate the contractility in rabbits on long-term low-fiber diet and specifically to compare the contraction threshold, the frequency, and the amplitude of flow-induced and distension-induced contractions in the duodenum between rabbits on normal diet and on long-term low-fiber diet. METHODS Ten rabbits were fed a low-fiber diet for 5 months (Intervention group), and five rabbits were fed normal diet (Control group). The duodenal segments were used for determination of mechanical parameters for analyses of contractility. The duodenal experiments were carried out in organ baths containing physiological Krebs solution. Pressure and diameter changes induced by contractions in response to flow and ramp distension were measured. The frequencies and amplitude of contractions were analyzed. Distension-induced contraction thresholds and maximum contraction amplitude of flow-induced contractions were calculated in terms of mechanical stress and strain. Multiple linear regression analyses were applied to study dependencies between contractility parameters and wall thickness, wall area, and muscle layer thickness. KEY RESULTS During distension, the pressure, stress, and strain thresholds for induction of phasic contraction were biggest in the Intervention Group (P < 0.05). In addition, the contraction frequencies during flow-induced contraction were highest in the Intervention Group (P < 0.05), whereas the maximum contraction amplitudes in terms of pressure, diameter, stress, and strain were lowest in the Intervention Group (P < 0.05). The contraction thresholds and contraction frequencies were negatively associated with the wall thickness, wall area, and muscle layer thickness, whereas maximum contraction amplitudes were positively associated with the wall thickness, wall area, and muscle layer thickness. CONCLUSIONS AND INFERENCES Duodenal contractility in rabbits fed with long-term low-fiber diet exhibited low contraction amplitudes and high contraction thresholds and frequencies. The changes were associated with the low-fiber diet-induced histomorphological remodeling. Studies on detailed structural and functional diet-induced changes in smooth muscle and intestinal nerves are needed for better understanding the remodeling mechanisms.
Collapse
Affiliation(s)
- Yue Liu
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China.,GIOME Academia, Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Zhuhai Da Hengqin Technology Development Co. Ltd., Zhuhai, China
| | - Jingbo Zhao
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China.,GIOME Academia, Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Mech-Sense, Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark
| | - Donghua Liao
- GIOME Academia, Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Guixue Wang
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Hans Gregersen
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China.,GIOME, Department of Surgery, Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|